Three or more routes for leukocyte migration into the central nervous system (original) (raw)
Garden, G. A. Microglia in human immunodeficiency virus-associated neurodegeneration. Glia40, 240–251 (2002). ArticlePubMed Google Scholar
Wiendl, H. et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol.168, 4772–4780 (2002). ArticleCASPubMed Google Scholar
Eikelenboom, P. et al. Neuroinflammation in Alzheimer's disease and prion disease. Glia40, 232–239 (2002). ArticleCASPubMed Google Scholar
Rogers, J., Strohmeyer, R., Kovelowski, C. J. & Li, R. Microglia and inflammatory mechanisms in the clearance of amyloid-β peptide. Glia40, 260–269 (2002). ArticlePubMed Google Scholar
Strazielle, N. & Ghersi-Egea, J. F. Choroid plexus in the central nervous system: biology and physiopathology. J. Neuropathol. Exp. Neurol.59, 561–574 (2000). ArticleCASPubMed Google Scholar
Cserr, H. F. & Knopf, P. M. Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today13, 507–512 (1992). A clear summary of the concept that cervical-lymphatic drainage of the cerebrospinal fluid (CSF) contributes to immune surveillance of the central nervous system (CNS). ArticleCASPubMed Google Scholar
Widner, H., Moller, G. & Johansson, B. B. Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand. J. Immunol.28, 563–571 (1988). ArticleCASPubMed Google Scholar
Weller, R. O., Engelhardt, B. & Phillips, M. J. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol.6, 275–288 (1996). ArticleCASPubMed Google Scholar
Weller, R. O., Kida, S. & Zhang, E. T. Pathways of fluid drainage from the brain: morphological aspects and immunological significance in rat and man. Brain Pathol.2, 277–284 (1992). ArticleCASPubMed Google Scholar
Boulton, M. et al. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am. J. Physiol.276, R818–R823 (1999). CASPubMed Google Scholar
de Vos, A. F. et al. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J. Immunol.169, 5415–5423 (2002). ArticleCASPubMed Google Scholar
Weller, R. O. Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J. Neuropathol. Exp. Neurol.57, 885–894 (1998). ArticleCASPubMed Google Scholar
Svenningsson, A. et al. Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Ann. Neurol.34, 155–161 (1993). ArticleCASPubMed Google Scholar
Huber, J. D., Egleton, R. D. & Davis, T. P. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci.24, 719–725 (2001). ArticleCASPubMed Google Scholar
Segal, M. B. Transport of nutrients across the choroid plexus. Microsc. Res. Tech.52, 38–48 (2001). ArticleCASPubMed Google Scholar
Massacesi, L. Compartmentalization of the immune response in the central nervous system and natural history of multiple sclerosis. Implications for therapy. Clin. Neurol. Neurosurg.104, 177–181 (2002). ArticlePubMed Google Scholar
Lee, S. C., Moore, G. R., Golenwsky, G. & Raine, C. S. Multiple sclerosis: a role for astroglia in active demyelination suggested by class II MHC expression and ultrastructural study. J. Neuropathol. Exp. Neurol.49, 122–136 (1990). ArticleCASPubMed Google Scholar
Bö, L. et al. Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J. Neuroimmunol.51, 135–146 (1994). ArticlePubMed Google Scholar
Perry, V. H., Bell, M. D., Brown, H. C. & Matyszak, M. K. Inflammation in the nervous system. Curr. Opin. Neurobiol.5, 636–641 (1995). ArticleCASPubMed Google Scholar
Perry, V. H. & Andersson, P. B. The inflammatory response in the CNS. Neuropathol. Appl. Neurobiol.18, 454–459 (1992). This review explains the concept that inflammatory reactions in the CNS favour the recruitment and activation of mononuclear phagocytes, even after necrotizing tissue injury. ArticleCASPubMed Google Scholar
Head, J. R. & Griffin, W. S. Functional capacity of solid tissue transplants in the brain: evidence for immunological privilege. Proc. R. Soc. Lond. B Biol. Sci.224, 375–387 (1985). ArticleCASPubMed Google Scholar
Stevenson, P. G., Austyn, J. M. & Hawke, S. Uncoupling of virus-induced inflammation and anti-viral immunity in the brain parenchyma. J. Gen. Virol.83, 1735–1743 (2002). ArticleCASPubMed Google Scholar
Carrithers, M. D., Visintin, I., Viret, C. & Janeway, C. S. Jr. Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J. Neuroimmunol.129, 51–57 (2002). ArticleCASPubMed Google Scholar
Svenningsson, A., Andersen, O., Edsbagge, M. & Stemme, S. Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J. Neuroimmunol.63, 39–46 (1995). ArticleCASPubMed Google Scholar
Hintzen, R. Q. et al. Analysis of CD27 surface expression on T cell subsets in MS patients and control individuals. J. Neuroimmunol.56, 99–105 (1995). ArticleCASPubMed Google Scholar
Kivisäkk, P. et al. T cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clin. Exp. Immunol.129, 510–518 (2002). ArticlePubMedPubMed Central Google Scholar
Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med.187, 875–883 (1998). ArticleCASPubMedPubMed Central Google Scholar
Loetscher, M., Loetscher, P., Brass, N., Meese, E. & Moser, B. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur. J. Immunol.28, 3696–3705 (1998). ArticleCASPubMed Google Scholar
Echchannaoui, H. et al. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J. Infect. Dis.186, 798–806 (2002). ArticleCASPubMed Google Scholar
Qing, Z. et al. Inhibition of antigen-specific T cell trafficking into the central nervous system via blocking PECAM1/CD31 molecule. J. Neuropathol. Exp. Neurol.60, 798–807 (2001). ArticleCASPubMed Google Scholar
Graesser, D. et al. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J. Clin. Invest.109, 383–392 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science239, 290–292 (1988). Using bone-marrow chimaeras, the authors show that perivascular mononuclear phagocytes that are derived from the marrow are sufficient to restimulate encephalitogenic T cells in the CNS. ArticleCASPubMed Google Scholar
Hickey, W. F. Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol.11, 125–137 (1999). ArticleCASPubMed Google Scholar
Lassmann, H., Schmied, M., Vass, K. & Hickey, W. F. Bone marrow derived elements and resident microglia in brain inflammation. Glia7, 19–24 (1993). ArticleCASPubMed Google Scholar
Kerfoot, S. M. & Kubes, P. Overlapping roles of P-selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J. Immunol.169, 1000–1006 (2002). ArticleCASPubMed Google Scholar
Piccio, L. et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J. Immunol.168, 1940–1949 (2002). This paper describes a new intravital-microscopy approach to examine the microvessels of the brain parenchyma, and shows that interaction between encephalitogenic T-cell blasts and unactivated cerebral microvessels is a low-efficiency event. ArticleCASPubMed Google Scholar
Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest.108, 557–565 (2001). Using intravital microscopy to analyse the trafficking to spinal-cord white matter, this paper indicates an unusual mechanism of integrin-mediated direct capture of T-cell blasts. ArticleCASPubMedPubMed Central Google Scholar
Linthicum, D. S., Munoz, J. J. & Blaskett, A. Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell. Immunol.73, 299–310 (1982). ArticleCASPubMed Google Scholar
Zeine, R. & Owens, T. Direct demonstration of the infiltration of murine central nervous system by Pgp-1/CD44high CD45RBlow CD4+ T cells that induce experimental allergic encephalomyelitis. J. Neuroimmunol.40, 57–69 (1992). ArticleCASPubMed Google Scholar
Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature356, 63–66 (1992). ArticleCASPubMed Google Scholar
Kent, S. J. et al. A monoclonal antibody to α4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J. Neuroimmunol.58, 1–10 (1995). ArticleCASPubMed Google Scholar
Keszthelyi, E. et al. Evidence for a prolonged role of α4 integrin throughout active experimental allergic encephalomyelitis. Neurology47, 1053–1059 (1996). ArticleCASPubMed Google Scholar
Theien, B. E. et al. Discordant effects of anti-VLA-4 treatment before and after onset of relapsing experimental autoimmune encephalomyelitis. J. Clin. Invest.107, 995–1006 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tubridy, N. et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology53, 466–472 (1999). ArticleCASPubMed Google Scholar
Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med.348, 15–23 (2003). After a decade of research, this paper reports on a successful Phase II clinical trial for multiple sclerosis using blockade of a specific trafficking determinant. ArticleCASPubMed Google Scholar
Lin, K. C. & Castro, A. C. Very late antigen 4 (VLA4) antagonists as anti-inflammatory agents. Curr. Opin. Chem. Biol.2, 453–457 (1998). ArticleCASPubMed Google Scholar
Brennan, F. R. et al. CD44 is involved in selective leucocyte extravasation during inflammatory central nervous system disease. Immunol.98, 427–435 (1999). ArticleCAS Google Scholar
Welsh, C. T., Rose, J. W., Hill, K. E. & Townsend, J. J. Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1α. J. Neuroimmunol.43, 161–167 (1993). ArticleCASPubMed Google Scholar
Cannella, B., Cross, A. H. & Raine, C. S. Anti-adhesion molecule therapy in experimental autoimmune encephalomyelitis. J. Neuroimmunol.46, 43–55 (1993). ArticleCASPubMed Google Scholar
Kobayashi, Y. et al. Antibodies against leukocyte function-associated antigen-1 and against intercellular adhesion molecule-1 together suppress the progression of experimental allergic encephalomyelitis. Cell. Immunol.164, 295–305 (1995). ArticleCASPubMed Google Scholar
Gordon, E. J., Myers, K. J., Dougherty, J. P., Rosen, H. & Ron, Y. Both anti-CD11a (LFA-1) and anti-CD11b (MAC-1) therapy delay the onset and diminish the severity of experimental autoimmune encephalomyelitis. J. Neuroimmunol.62, 153–160 (1995). ArticleCASPubMed Google Scholar
Brocke, S., Piercy, C., Steinman, L., Weissman, I. L. & Veromaa, T. Antibodies to CD44 and integrin α4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc. Natl Acad. Sci. USA96, 6896–6901 (1999). ArticleCASPubMedPubMed Central Google Scholar
Engelhardt, B., Vestweber, D., Hallmann, R. & Schulz, M. E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood–brain barrier in experimental autoimmune encephalomyelitis. Blood90, 4459–4472 (1997). ArticleCASPubMed Google Scholar
Carvalho-Tavares, J. et al. A role for platelets and endothelial selectins in tumor necrosis factor-α-induced leukocyte recruitment in the brain microvasculature. Circ. Res.87, 1141–1148 (2000). ArticleCASPubMed Google Scholar
Grewal, I. S. et al. CD62L is required on effector cells for local interactions in the CNS to cause myelin damage in experimental allergic encephalomyelitis. Immunity14, 291–302 (2001). ArticleCASPubMed Google Scholar
Fife, B. T. et al. CXCL10 (IFN-γ-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol.166, 7617–7624 (2001). ArticleCASPubMed Google Scholar
Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol.155, 5003–5010 (1995). The first paper to show an essential role for one chemokine in mouse adoptive-transfer experimental autoimmune encephalomyelitis (EAE). CASPubMed Google Scholar
Tran, E. H., Kuziel, W. A. & Owens, T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1α or its CCR5 receptor. Eur. J. Immunol.30, 1410–1415 (2000). ArticleCASPubMed Google Scholar
Yoneyama, H. et al. Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J. Exp. Med.195, 1257–1266 (2002). ArticleCASPubMedPubMed Central Google Scholar
Narumi, S. et al. Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol.32, 1784–1791 (2002). ArticleCASPubMed Google Scholar
Skundric, D. S., Kim, C., Tse, H. Y. & Raine, C. S. Homing of T cells to the central nervous system throughout the course of relapsing experimental autoimmune encephalomyelitis in Thy-1 congenic mice. J. Neuroimmunol.46, 113–121 (1993). ArticleCASPubMed Google Scholar
Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med.192, 871–880 (2000). This paper reports the remarkable observation that T-cell receptor (TCR)-transgenic T cells of a naive phenotype migrate efficiently and spontaneously to the CNS. ArticleCASPubMedPubMed Central Google Scholar
Flügel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity14, 547–560 (2001). The authors describe a stringently regulated programme of expression of activation and migration determinants that accompanies the journey of encephalitogenic T cells from the blood to the lymphoid organs to the brain. ArticlePubMed Google Scholar
Hickey, W. F. Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol.1, 97–105 (1991). This report includes a summary of the early work on the accumulation of activated T-cell blasts in the CNS. ArticleCASPubMed Google Scholar
Carrithers, M. D., Visintin, I., Kang, S. J. & Janeway, C. A. Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain123, 1092–1101 (2000). ArticlePubMed Google Scholar
Huseby, E. S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med.194, 669–676 (2001). ArticleCASPubMedPubMed Central Google Scholar
Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med.192, 393–404 (2000). ArticleCASPubMedPubMed Central Google Scholar
Neumann, H., Medana, I. M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci.25, 313–319 (2002). ArticleCASPubMed Google Scholar
Campbell, J. J. et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol.166, 6477–6482 (2001). ArticleCASPubMed Google Scholar
Gao, Y. L., Rajan, A. J., Raine, C. S. & Brosnan, C. F. γδ T cells express activation markers in the central nervous system of mice with chronic-relapsing experimental autoimmune encephalomyelitis. J. Autoimmun.17, 261–271 (2001). ArticleCASPubMed Google Scholar
Rajan, A. J., Asensio, V. C., Campbell, I. L. & Brosnan, C. F. Experimental autoimmune encephalomyelitis on the SJL mouse: effect of γδ T cell depletion on chemokine and chemokine receptor expression in the central nervous system. J. Immunol.164, 2120–2130 (2000). ArticleCASPubMed Google Scholar
Cardona, A. E., Restrepo, B. I., Jaramillo, J. M. & Teale, J. M. Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of γδ T cells. J. Immunol.162, 995–1002 (1999). CASPubMed Google Scholar
Cardona, A. E. & Teale, J. M. γδ T cell-deficient mice exhibit reduced disease severity and decreased inflammatory response in the brain in murine neurocysticercosis. J. Immunol.169, 3163–3171 (2002). ArticleCASPubMed Google Scholar
Brosnan, C. F., Bornstein, M. B. & Bloom, B. R. The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J. Immunol.126, 614–620 (1981). CASPubMed Google Scholar
Huitinga, I., van Rooijen, N., de Groot, C. J., Uitdehaag, B. M. & Dijkstra, C. D. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J. Exp. Med.172, 1025–1033 (1990). ArticleCASPubMed Google Scholar
Fife, B. T., Huffnagle, G. B., Kuziel, W. A. & Karpus, W. J. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med.192, 899–905 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huang, D. R., Wang, J., Kivisäkk, P., Rollins, B. J. & Ransohoff, R. M. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med.193, 713–726 (2001). ArticleCASPubMedPubMed Central Google Scholar
Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L. & Luster, A. D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med.192, 1075–1080 (2000) ArticleCASPubMedPubMed Central Google Scholar
Ma, M. et al. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J. Neurosci. Res.68, 691–702 (2002). ArticleCASPubMed Google Scholar
Rottman, J. B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol.30, 2372–2377 (2000). ArticleCASPubMed Google Scholar
Huo, Y. et al. The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J. Clin. Invest.108, 1307–1314 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rollins, B. J. Chemokines and atherosclerosis: what Adam Smith has to say about vascular disease. J. Clin. Invest.108, 1269–1271 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kelsall, B. L., Biron, C. A., Sharma, O. & Kaye, P. M. Dendritic cells at the host-pathogen interface. Nature Immunol.3, 699–702 (2002). ArticleCAS Google Scholar
McMenamin, P. G. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp. Neurol.405, 553–562 (1999). ArticleCASPubMed Google Scholar
Matyszak, M. K. & Perry, V. H. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience74, 599–608 (1996). ArticleCASPubMed Google Scholar
Serafini, B., Columba-Cabezas, S., Di Rosa, F. & Aloisi, F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol.157, 1991–2002 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fischer, H. G., Bonifas, U. & Reichmann, G. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J. Immunol.164, 4826–4834 (2000). ArticleCASPubMed Google Scholar
Reichmann, G., Schroeter, M., Jander, S. & Fischer, H. G. Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J. Neuroimmunol.129, 125–132 (2002). ArticleCASPubMed Google Scholar
Pashenkov, M. et al. Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J. Neuroimmunol.122, 106–116 (2002). ArticleCASPubMed Google Scholar
Pashenkov, M. et al. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain124, 480–492 (2001). ArticleCASPubMed Google Scholar
Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol.28, 2760–2769 (1998). ArticleCASPubMed Google Scholar
Knopf, P. M. et al. Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells. J. Immunol.161, 692–701 (1998). CASPubMed Google Scholar
Anthony, D. et al. CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood–brain barrier breakdown. Curr. Biol.8, 923–926 (1998). ArticleCASPubMed Google Scholar
Bell, M. D. et al. Recombinant human adenovirus with rat MIP-2 gene insertion causes prolonged PMN recruitment to the murine brain. Eur. J. Neurosci.8, 1803–1811 (1996). ArticleCASPubMed Google Scholar
Tani, M. et al. Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J. Clin. Invest.98, 529–539 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kielian, T. & Hickey, W. F. Proinflammatory cytokine, chemokine, and cellular adhesion molecule expression during the acute phase of experimental brain abscess development. Am. J. Pathol.157, 647–658 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kielian, T., Barry, B. & Hickey, W. F. CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J. Immunol.166, 4634–4643 (2001). ArticleCASPubMed Google Scholar
Luther, S. A. & Cyster, J. G. Chemokines as regulators of T cell differentiation. Nature Immunol.2, 102–107 (2001). ArticleCAS Google Scholar
Baron, J. L., Madri, J. A., Ruddle, N. H., Hashim, G. & Janeway, C. A. Jr. Surface expression of α4 integrin by CD4 T cells is required for their entry into brain parenchyma. J. Exp. Med.177, 57–68 (1993). ArticleCASPubMed Google Scholar
Kuchroo, V. K. et al. Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J. Immunol.151, 4371–4382 (1993). CASPubMed Google Scholar
Steffen, B. J., Butcher, E. C. & Engelhardt, B. Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am. J. Pathol.145, 189–201 (1994). CASPubMedPubMed Central Google Scholar
Tang, T., Frenette, P. S., Hynes, R. O., Wagner, D. D. & Mayadas, T. N. Cytokine-induced meningitis is dramatically attenuated in mice deficient in endothelial selectins. J. Clin. Invest.97, 2485–2490 (1996). ArticleCASPubMedPubMed Central Google Scholar
Archelos, J. J. et al. Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Ann. Neurol.34, 145–154 (1993). ArticleCASPubMed Google Scholar
Willenborg, D. O., Simmons, R. D., Tamatani, T. & Miyasaka, M. ICAM-1-dependent pathway is not critically involved in the inflammatory process of autoimmune encephalomyelitis or in cytokine-induced inflammation of the central nervous system. J. Neuroimmunol.45, 147–154 (1993). ArticleCASPubMed Google Scholar
Dopp, J. M., Breneman, S. M. & Olschowka, J. A. Expression of ICAM-1, VCAM-1, L-selectin, and leukosialin in the mouse central nervous system during the induction and remission stages of experimental allergic encephalomyelitis. J. Neuroimmunol.54, 129–144 (1994). ArticleCASPubMed Google Scholar
Samoilova, E. B., Horton, J. L. & Chen, Y. Experimental autoimmune encephalomyelitis in intercellular adhesion molecule-1-deficient mice. Cell. Immunol.190, 83–89 (1998). ArticleCASPubMed Google Scholar
Engelhardt, B. et al. The development of experimental autoimmune encephalomyelitis in the mouse requires α4-integrin but not α4β7-integrin. J. Clin. Invest.102, 2096–2105 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kanwar, J. R., Kanwar, R. K., Wang, D. & Krissansen, G. W. Prevention of a chronic progressive form of experimental autoimmune encephalomyelitis by an antibody against mucosal addressin cell adhesion molecule-1, given early in the course of disease progression. Immunol. Cell Biol.78, 641–645 (2000). ArticleCASPubMed Google Scholar
Kanwar, J. R. et al. β7 integrins contribute to demyelinating disease of the central nervous system. J. Neuroimmunol.103, 146–152 (2000). ArticleCASPubMed Google Scholar
Stein, J. V. et al. L-selectin-mediated leukocyte adhesion in vivo: microvillous distribution determines tethering efficiency, but not rolling velocity. J. Exp. Med.189, 37–50 (1999). ArticleCASPubMedPubMed Central Google Scholar
von Andrian, U. H., Hasslen, S. R., Nelson, R. D., Erlandsen, S. L. & Butcher, E. C. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell82, 989–999 (1995). ArticleCASPubMed Google Scholar
Berlin, C. et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell80, 413–422 (1995). ArticleCASPubMed Google Scholar
Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell76, 301–314 (1994). ArticleCASPubMed Google Scholar
Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol.11, 549–599 (1995). ArticleCASPubMed Google Scholar
Foxman, E. F., Campbell, J. J. & Butcher, E. C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol.139, 1349–1360 (1997). ArticleCASPubMedPubMed Central Google Scholar
Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol.12, 336–341 (2000). ArticleCASPubMed Google Scholar
Ansel, K. M., Harris, R. B. & Cyster, J. G. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity16, 67–76 (2002). The first description of subset-specific leukocyte migration from the blood into a tissue cavity. ArticleCASPubMed Google Scholar
Kivisäkk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA (in the press)