Echtenacher, B., Mannel, D. N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature381, 75–77 (1996). ArticleCASPubMed Google Scholar
Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature381, 77–80 (1996). References 1 and 2 were the first to show a crucial role for mast cells in host defence against bacterial infectionin vivo. They also indicated that TNF is an important mediator of this response. ArticleCASPubMed Google Scholar
Galli, S. J., Maurer, M. & Lantz, C. S. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol.11, 53–59 (1999). ArticleCASPubMed Google Scholar
Tertian, G., Yung, Y. P., Guy-Grand, D. & Moore, M. A. Long-term in vitro culture of murine mast cells. I. Description of a growth factor-dependent culture technique. J. Immunol.127, 788–794 (1981). CASPubMed Google Scholar
Nakano, T. et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med.162, 1025–1043 (1985). ArticleCASPubMed Google Scholar
Tsai, M. et al. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor. Proc. Natl Acad. Sci. USA88, 6382–6386 (1991). ArticleCASPubMedPubMed Central Google Scholar
Tsai, M. et al. The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry, and protease phenotype. J. Exp. Med.174, 125–131 (1991). ArticleCASPubMed Google Scholar
Schrader, J. W., Lewis, S. J., Clark-Lewis, I. & Culvenor, J. G. The persisting (P) cell: histamine content, regulation by a T cell-derived factor, origin from a bone marrow precursor, and relationship to mast cells. Proc. Natl Acad. Sci. USA78, 323–327 (1981). ArticleCASPubMedPubMed Central Google Scholar
Ihle, J. N. et al. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, P cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J. Immunol.131, 282–287 (1983). CASPubMed Google Scholar
Kitamura, Y. & Go, S. Decreased production of mast cells in S1/S1d anemic mice. Blood53, 492–497 (1979). CASPubMed Google Scholar
Kitamura, Y., Go, S. & Hatanaka, K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood52, 447–452 (1978). CASPubMed Google Scholar
Madden, K. B. et al. Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis. J. Immunol.147, 1387–1391 (1991). CASPubMed Google Scholar
Saito, H. et al. Selective growth of human mast cells induced by Steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells. J. Immunol.157, 343–350 (1996). CASPubMed Google Scholar
Costa, J. J. et al. Recombinant human stem cell factor (kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J. Exp. Med.183, 2681–2686 (1996). ArticleCASPubMed Google Scholar
Enerback, L. & Lowhagen, G. B. Long term increase of mucosal mast cells in the rat induced by administration of compound 48/80. Cell Tissue Res.198, 209–215 (1979). ArticleCASPubMed Google Scholar
Befus, A. D., Pearce, F. L., Goodacre, R. & Bienenstock, J. Unique functional characteristics of mucosal mast cells. Adv. Exp. Med. Biol.149, 521–527 (1982). ArticleCASPubMed Google Scholar
Bienenstock, J. et al. Comparative aspects of mast cell heterogeneity in different species and sites. Int. Arch. Allergy Appl. Immunol.77, 126–129 (1985). ArticleCASPubMed Google Scholar
Heavey, D. J. et al. Generation of leukotriene C4, leukotriene B4, and prostaglandin D2 by immunologically activated rat intestinal mucosa mast cells. J. Immunol.140, 1953–1957 (1988). CASPubMed Google Scholar
Pearce, F. L., Befus, A. D., Gauldie, J. & Bienenstock, J. Mucosal mast cells. II. Effects of anti-allergic compounds on histamine secretion by isolated intestinal mast cells. J. Immunol.128, 2481–2486 (1982). CASPubMed Google Scholar
Irani, A. A., Schechter, N. M., Craig, S. S., DeBlois, G. & Schwartz, L. B. Two types of human mast cells that have distinct neutral protease compositions. Proc. Natl Acad. Sci. USA.83, 4464–4468 (1986). ArticleCASPubMedPubMed Central Google Scholar
Irani, A. M. et al. Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. J. Immunol.138, 4381–4386 (1987). CASPubMed Google Scholar
Mayrhofer, G. & Bazin, H. Nature of the thymus dependency of mucosal mast cells. III. Mucosal mast cells in nude mice and nude rats, in B rats and in a child with the Di George syndrome. Int. Arch. Allergy Appl. Immunol.64, 320–331 (1981). ArticleCASPubMed Google Scholar
Irani, A. M., Butrus, S. I., Tabbara, K. F. & Schwartz, L. B. Human conjunctival mast cells: distribution of MCT and MCTC in vernal conjunctivitis and giant papillary conjunctivitis. J. Allergy Clin. Immunol.86, 34–40 (1990). ArticleCASPubMed Google Scholar
Gotis-Graham, I. & McNeil, H. P. Mast cell responses in rheumatoid synovium. Association of the MCTC subset with matrix turnover and clinical progression. Arthritis Rheum.40, 479–489 (1997). ArticleCASPubMed Google Scholar
Bienenstock, J. et al. The role of mast cells in inflammatory processes: evidence for nerve/mast cell interactions. Int. Arch. Allergy Appl. Immunol.82, 238–243 (1987). ArticleCASPubMed Google Scholar
Stead, R. H. et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc. Natl Acad. Sci. USA84, 2975–2979 (1987). ArticleCASPubMedPubMed Central Google Scholar
Starkey, J. R., Crowle, P. K. & Taubenberger, S. Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int. J. Cancer42, 48–52 (1988). ArticleCASPubMed Google Scholar
Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev.13, 1382–1397 (1999). ArticleCASPubMedPubMed Central Google Scholar
Compton, S. J., Cairns, J. A., Holgate, S. T. & Walls, A. F. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1β and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J. Immunol.161, 1939–1946 (1998). This report showed that tryptase secreted by human mast cells can activate endothelial cells and initiate the production of CXCL8. CASPubMed Google Scholar
Huang, C. et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J. Immunol.160, 1910–1919 (1998). This paper established that a specific protease secreted by mouse mast cells can selectively induce neutrophil recruitmentin vivo. CASPubMed Google Scholar
Algermissen, B., Hermes, B., Feldmann-Boeddeker, I., Bauer, F. & Henz, B. M. Mast cell chymase and tryptase during tissue turnover: analysis on in vitro mitogenesis of fibroblasts and keratinocytes and alterations in cutaneous scars. Exp. Dermatol.8, 193–198 (1999). ArticleCASPubMed Google Scholar
Muramatsu, M., Katada, J., Hayashi, I. & Majima, M. Chymase as a proangiogenic factor. A possible involvement of chymase–angiotensin-dependent pathway in the hamster sponge angiogenesis model. J. Biol. Chem.275, 5545–5552 (2000). ArticleCASPubMed Google Scholar
Compton, S. J., Cairns, J. A., Holgate, S. T. & Walls, A. F. Human mast cell tryptase stimulates the release of an IL-8-dependent neutrophil chemotactic activity from human umbilical vein endothelial cells (HUVEC). Clin. Exp. Immunol.121, 31–36 (2000). ArticleCASPubMedPubMed Central Google Scholar
Davidson, S., Gilead, L., Amira, M., Ginsburg, H. & Razin, E. Synthesis of chondroitin sulfate D and heparin proteoglycans in murine lymph node-derived mast cells. The dependence on fibroblasts. J. Biol. Chem.265, 12324–12330 (1990). CASPubMed Google Scholar
Gilead, L. et al. Human gastric mucosal mast cells are chondroitin sulphate E-containing mast cells. Immunology62, 23–28 (1987). CASPubMedPubMed Central Google Scholar
Di Nardo A., Vitiello, A. & Gallo, R. L. Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol.170, 2274–2278 (2003). ArticleCASPubMed Google Scholar
Leal-Berumen, I., Conlon, P. & Marshall, J. S. IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J. Immunol.152, 5468–5476 (1994). This paper showed that mast cells can respond to LPS and produce cytokines independently of degranulation. CASPubMed Google Scholar
Gupta, A. A., Leal-Berumen, I., Croitoru, K. & Marshall, J. S. Rat peritoneal mast cells produce IFN-γ following IL-12 treatment but not in response to IgE-mediated activation. J. Immunol.157, 2123–2128 (1996). CASPubMed Google Scholar
Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest.109, 1351–1359 (2002). This report contrasted the important roles of TLR2 and TLR4 expressed by mast cells for stimulating the production of mediators and for responding to local inflammationin vivo. ArticleCASPubMedPubMed Central Google Scholar
Supajatura, V. et al. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol.167, 2250–2256 (2001). ArticleCASPubMed Google Scholar
McCurdy, J. D., Olynych, T. J., Maher, L. H. & Marshall, J. S. Distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J. Immunol.170, 1625–1629 (2003). ArticleCASPubMed Google Scholar
Varadaradjalou, S. et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur. J. Immunol.33, 899–906 (2003). ArticleCASPubMed Google Scholar
Marshall, J. S., Leal-Berumen, I., Nielsen, L., Glibetic, M. & Jordana, M. Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells. J. Clin. Invest.97, 1122–1128 (1996). ArticleCASPubMedPubMed Central Google Scholar
McCurdy, J. D., Lin, T. J. & Marshall, J. S. Toll-like receptor 4-mediated activation of murine mast cells. J. Leukoc. Biol.70, 977–984 (2001). CASPubMed Google Scholar
Zhu, F. G. & Marshall, J. S. CpG-containing oligodeoxynucleotides induce TNF-α and IL-6 production but not degranulation from murine bone marrow-derived mast cells. J. Leukoc. Biol.69, 253–262 (2001). CASPubMed Google Scholar
Matsushima, H., Yamada, N., Matsue, H. & Shimada, S. TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J. Immunol.173, 531–541 (2004). ArticleCASPubMed Google Scholar
Kulka, M., Alexopoulou, L., Flavell, R. A. & Metcalfe, D. D. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J. Allergy Clin. Immunol.114, 174–182 (2004). References 47 and 48 established that TLR3- and TLR7-mediated activation can induce selective secretion of mediators by subsets of mast cells in rodents and humans. ArticleCASPubMed Google Scholar
Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303, 1526–1529 (2004). ArticleCASPubMed Google Scholar
Okumura, S. et al. Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcεRI. Blood102, 2547–2554 (2003). ArticleCASPubMed Google Scholar
Malaviya, R., Gao, Z., Thankavel, K., van der Merwe, P. A. & Abraham, S. N. The mast cell tumor necrosis factor α response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc. Natl Acad. Sci. USA96, 8110–8115 (1999). ArticleCASPubMedPubMed Central Google Scholar
Woolhiser, M. R., Okayama, Y., Gilfillan, A. M. & Metcalfe, D. D. IgG-dependent activation of human mast cells following up-regulation of FcγRI by IFN-γ. Eur. J. Immunol.31, 3298–3307 (2001). This paper showed that the expression of FcγRs is upregulated by human mast cells following treatment with IFN-γ and that these cells are activated following recognition of IgG-containing immune complexes. ArticleCASPubMed Google Scholar
Genovese, A. et al. Bacterial immunoglobulin superantigen proteins A and L activate human heart mast cells by interacting with immunoglobulin E. Infect. Immun.68, 5517–5524 (2000). ArticleCASPubMedPubMed Central Google Scholar
Patella, V., Florio, G., Petraroli, A. & Marone, G. HIV-1 gp120 induces IL-4 and IL-13 release from human FcεRI+ cells through interaction with the VH3 region of IgE. J. Immunol.164, 589–595 (2000). ArticleCASPubMed Google Scholar
Genovese, A. et al. Protein Fv produced during viral hepatitis is an endogenous immunoglobulin superantigen activating human heart mast cells. Int. Arch. Allergy Immunol.132, 336–345 (2003). ArticleCASPubMed Google Scholar
Jarrett, E. E. & Miller, H. R. Production and activities of IgE in helminth infection. Prog. Allergy31, 178–233 (1982). CASPubMed Google Scholar
Verwaerde, C. et al. Functional properties of a rat monoclonal IgE antibody specific for Schistosoma mansoni. J. Immunol.138, 4441–4446 (1987). CASPubMed Google Scholar
Gurish, M. F. et al. IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J. Immunol.172, 1139–1145 (2004). ArticleCASPubMed Google Scholar
Nilsson, G. et al. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J. Immunol.157, 1693–1698 (1996). CASPubMed Google Scholar
Fureder, W. et al. Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J. Immunol.155, 3152–3160 (1995). CASPubMed Google Scholar
Weber, S., Babina, M., Feller, G. & Henz, B. M. Human leukaemic (HMC-1) and normal skin mast cells express β2-integrins: characterization of β2-integrins and ICAM-1 on HMC-1 cells. Scand. J. Immunol.45, 471–481 (1997). ArticleCASPubMed Google Scholar
Prodeus, A. P., Zhou, X., Maurer, M., Galli, S. J. & Carroll, M. C. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature390, 172–175 (1997). ArticleCASPubMed Google Scholar
Lora, J. M. et al. FcεRI-dependent gene expression in human mast cells is differentially controlled by T helper type 2 cytokines. J. Allergy Clin. Immunol.112, 1119–1126 (2003). ArticleCASPubMed Google Scholar
Ochi, H., De Jesus, N. H., Hsieh, F. H., Austen, K. F. & Boyce, J. A. IL-4 and -5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc. Natl Acad. Sci. USA97, 10509–10513 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hsieh, F. H., Lam, B. K., Penrose, J. F., Austen, K. F. & Boyce, J. A. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J. Exp. Med.193, 123–133 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bischoff, S. C., Sellge, G., Manns, M. P. & Lorentz, A. Interleukin-4 induces a switch of human intestinal mast cells from proinflammatory cells to TH2-type cells. Int. Arch. Allergy Immunol.124, 151–154 (2001). ArticleCASPubMed Google Scholar
Kandere-Grzybowska, K. et al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J. Immunol.171, 4830–4836 (2003). ArticleCASPubMed Google Scholar
Leal-Berumen, I., O'Byrne, P., Gupta, A., Richards, C. D. & Marshall, J. S. Prostanoid enhancement of interleukin-6 production by rat peritoneal mast cells. J. Immunol.154, 4759–4767 (1995). CASPubMed Google Scholar
Abdel-Majid, R. M. & Marshall, J. S. Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J. Immunol.172, 1227–1236 (2004). ArticleCASPubMed Google Scholar
Mellor, E. A., Austen, K. F. & Boyce, J. A. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J. Exp. Med.195, 583–592 (2002). This report was the first to show that cysteinyl leukotrienes can activate human mast cells to selectively produce cytokines. ArticleCASPubMedPubMed Central Google Scholar
Figueroa, D. J. et al. Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin. Exp. Allergy33, 1380–1388 (2003). ArticleCASPubMed Google Scholar
Mellor, E. A. et al. Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc. Natl Acad. Sci. USA100, 11589–11593 (2003). ArticleCASPubMedPubMed Central Google Scholar
Leal-Berumen, I., Snider, D. P., Barajas-Lopez, C. & Marshall, J. S. Cholera toxin increases IL-6 synthesis and decreases TNF-α production by rat peritoneal mast cells. J. Immunol.156, 316–321 (1996). CASPubMed Google Scholar
King, C. A., Anderson, R. & Marshall, J. S. Dengue virus selectively induces human mast cell chemokine production. J. Virol.76, 8408–8419 (2002). This paper was the first to show the selective production of chemokines by mast cells as a result of viral infection, which has implications for the pathogenesis of dengue-virus-induced disease. ArticleCASPubMedPubMed Central Google Scholar
Lin, T. J., Garduno, R., Boudreau, R. T. & Issekutz, A. C. Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cell-derived IL-1α and β. J. Immunol.169, 4522–4530 (2002). ArticleCASPubMed Google Scholar
Lin, T. J. et al. Selective early production of CCL20, or macrophage inflammatory protein 3α, by human mast cells in response to Pseudomonas aeruginosa. Infect. Immun.71, 365–373 (2003). ArticleCASPubMedPubMed Central Google Scholar
King, C. A., Marshall, J. S., Alshurafa, H. & Anderson, R. Release of vasoactive cytokines by antibody enhanced dengue virus infection of a human mast cell/basophil line. J. Virol.74, 7146–7150 (2000). ArticleCASPubMedPubMed Central Google Scholar
Malaviya, R. & Abraham, S. N. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J. Leukoc. Biol.67, 841–846 (2000). ArticleCASPubMed Google Scholar
Tani, K. et al. Chymase is a potent chemoattractant for human monocytes and neutrophils. J. Leukoc. Biol.67, 585–589 (2000). ArticleCASPubMed Google Scholar
Huang, C. et al. Evaluation of the substrate specificity of human mast cell tryptase βI and demonstration of its importance in bacterial infections of the lung. J. Biol. Chem.276, 26276–26284 (2001). ArticleCASPubMed Google Scholar
Vergnolle, N. Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo. J. Immunol.163, 5064–5069 (1999). CASPubMed Google Scholar
Lindner, J. R. et al. Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J. Immunol.165, 6504–6510 (2000). ArticleCASPubMed Google Scholar
Williams, C. M. & Coleman, J. W. Induced expression of mRNA for IL-5, IL-6, TNF-α, MIP-2 and IFN-γ in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A. Immunology86, 244–249 (1995). CASPubMedPubMed Central Google Scholar
Babina, M. et al. Comparative cytokine profile of human skin mast cells from two compartments — strong resemblance with monocytes at baseline but induction of IL-5 by IL-4 priming. J. Leukoc. Biol.75, 244–252 (2003). ArticlePubMedCAS Google Scholar
Hogaboam, C. et al. Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell–fibroblast interactions. J. Immunol.160, 6166–6171 (1998). CASPubMed Google Scholar
Rajakulasingam, K. et al. RANTES in human allergen-induced rhinitis: cellular source and relation to tissue eosinophilia. Am. J. Respir. Crit. Care Med.155, 696–703 (1997). ArticleCASPubMed Google Scholar
Donaldson, L. E., Schmitt, E., Huntley, J. F., Newlands, G. F. & Grencis, R. K. A critical role for stem cell factor and c-kit in host protective immunity to an intestinal helminth. Int. Immunol.8, 559–567 (1996). ArticleCASPubMed Google Scholar
Grencis, R. K. TH2-mediated host protective immunity to intestinal nematode infections. Phil. Trans. R. Soc. Lond. B352, 1377–1384 (1997). ArticleCAS Google Scholar
Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P. & Swanson, B. J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nature Immunol.4, 974–981 (2003). This report showed the importance of mast-cell-derived LTB4as a chemoattractant for CD8+ effector T cells. ArticleCAS Google Scholar
Malaviya, R., Twesten, N. J., Ross, E. A., Abraham, S. N. & Pfeifer, J. D. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J. Immunol.156, 1490–1496 (1996). CASPubMed Google Scholar
Poncet, P., Arock, M. & David, B. MHC class II-dependent activation of CD4+ T cell hybridomas by human mast cells through superantigen presentation. J. Leukoc. Biol.66, 105–112 (1999). ArticleCASPubMed Google Scholar
Frandji, P. et al. Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur. J. Immunol.26, 2517–2528 (1996). ArticleCASPubMed Google Scholar
Mazzoni, A., Young, H. A., Spitzer, J. H., Visintin, A. & Segal, D. M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest.108, 1865–1873 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mazzoni, A. et al. Histamine inhibits IFN-α release from plasmacytoid dendritic cells. J. Immunol.170, 2269–2273 (2003). ArticleCASPubMed Google Scholar
Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol.170, 3037–3045 (2003). ArticleCASPubMed Google Scholar
McLachlan, J. B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunol.4, 1199–1205 (2003). This paper was the first to show that mast cells have an important role in the regulation of lymph-node hypertrophy during infection, using a TNF-dependent mechanism. ArticleCAS Google Scholar
Gordon, J. R. & Galli, S. J. Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature346, 274–276 (1990). This was the first formal proof that mast cells can release pre-formed TNF, which is crucial for early innate immune responses, as well as important in the generation of a longer-term response to TNF. ArticleCASPubMed Google Scholar
Finkelman, F. D. & Urban, J. F. Jr. The other side of the coin: the protective role of the TH2 cytokines. J. Allergy Clin. Immunol.107, 772–780 (2001). ArticleCASPubMed Google Scholar
Woodbury, R. G. et al. Mucosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rat. Nature312, 450–452 (1984). This was the first report to show that activation of mucosal mast cells and the release of proteases are temporally associated with nematode expulsion. ArticleCASPubMed Google Scholar
Lantz, C. S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature392, 90–93 (1998). ArticleCASPubMed Google Scholar
Mahida, Y. R. Host-parasite interactions in rodent nematode infections. J. Helminthol.77, 125–131 (2003). ArticleCASPubMed Google Scholar
Henz, B. M., Maurer, M., Lippert, U., Worm, M. & Babina, M. Mast cells as initiators of immunity and host defense. Exp. Dermatol.10, 1–10 (2001). ArticleCASPubMed Google Scholar
Wershil, B. K., Theodos, C. M., Galli, S. J. & Titus, R. G. Mast cells augment lesion size and persistence during experimental Leishmania major infection in the mouse. J. Immunol.152, 4563–4571 (1994). CASPubMed Google Scholar
Faulkner, H., Renauld, J. C., Van Snick J. & Grencis, R. K. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect. Immun.66, 3832–3840 (1998). CASPubMedPubMed Central Google Scholar
McDermott, J. R. et al. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc. Natl Acad. Sci. USA100, 7761–7766 (2003). This paper showed the crucial role of mast cells and mast-cell proteases in disruption of the epithelial barrier to mediate the expulsion of nematodes. ArticleCASPubMedPubMed Central Google Scholar
Cutts, L. & Wilson, R. A. Elimination of a primary schistosome infection from rats coincides with elevated IgE titres and mast cell degranulation. Parasite Immunol.19, 91–102 (1997). ArticleCASPubMed Google Scholar
Bleiss, W. et al. Protective immunity induced by irradiated third-stage larvae of the filaria Acanthocheilonema viteae is directed against challenge third-stage larvae before molting. J. Parasitol.88, 264–270 (2002). ArticleCASPubMed Google Scholar
Malaviya, R. & Abraham, S. N. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J. Leukoc. Biol.67, 841–846 (2000). ArticleCASPubMed Google Scholar
Gommerman, J. L. et al. A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation. J. Immunol.165, 6915–6921 (2000). ArticleCASPubMed Google Scholar
Edelson, B. T., Li, Z., Pappan, L. K. & Zutter, M. M. Mast cell-mediated inflammatory responses require the α2β1 integrin. Blood103, 2214–2220 (2004). ArticleCASPubMed Google Scholar
Maurer, M. et al. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J. Exp. Med.188, 2343–2348 (1998). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood97, 3484–3490 (2001). ArticleCASPubMed Google Scholar
Bannert, N. et al. Human mast cell progenitors can be infected by macrophagetropic human immunodeficiency virus type 1 and retain virus with maturation in vitro. J. Virol.75, 10808–10814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, A. E., Price, P., Robertson, T. A., Padimitriou, J. M. & Shellam, G. R. Replication of murine cytomegalovirus in mast cells. Arch. Virol.115, 299–307 (1990). ArticleCASPubMed Google Scholar
Sundstrom, J. B., Little, D. M., Villinger, F., Ellis, J. E. & Ansari, A. A. Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J. Immunol.172, 4391–4401 (2004). ArticleCASPubMed Google Scholar
Kimman, T. G., Terpstra, G. K., Daha, M. R. & Westenbrink, F. Pathogenesis of naturally acquired bovine respiratory syncytial virus infection in calves: evidence for the involvement of complement and mast cell mediators. Am. J. Vet. Res.50, 694–700 (1989). CASPubMed Google Scholar
van Schaik, S. M. et al. Increased production of IFN-γ and cysteinyl leukotrienes in virus-induced wheezing. J. Allergy Clin. Immunol.103, 630–636 (1999). ArticleCASPubMed Google Scholar
Castleman, W. L., Sorkness, R. L., Lemanske, R. F. Jr & McAllister, P. K. Viral bronchiolitis during early life induces increased numbers of bronchiolar mast cells and airway hyperresponsiveness. Am. J. Pathol.137, 821–831 (1990). CASPubMedPubMed Central Google Scholar
Mokhtarian, F. & Griffin, D. E. The role of mast cells in virus-induced inflammation in the murine central nervous system. Cell. Immunol.86, 491–500 (1984). ArticleCASPubMed Google Scholar
Sorden, S. D. & Castleman, W. L. Virus-induced increases in airway mast cells in Brown Norway rats are associated with enhanced pulmonary viral replication and persisting lymphocytic infiltration. Exp. Lung Res.21, 197–213 (1995). ArticleCASPubMed Google Scholar
Bridges, A. J. et al. Human synovial mast cell involvement in rheumatoid arthritis and osteoarthritis. Relationship to disease type, clinical activity, and antirheumatic therapy. Arthritis Rheum.34, 1116–1124 (1991). ArticleCASPubMed Google Scholar
Johnston, B., Burns, A. R. & Kubes, P. A role for mast cells in the development of adjuvant-induced vasculitis and arthritis. Am. J. Pathol.152, 555–563 (1998). CASPubMedPubMed Central Google Scholar
Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science297, 1689–1692 (2002). ArticleCASPubMed Google Scholar
Kaartinen, M., Penttila, A. & Kovanen, P. T. Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-α. Circulation94, 2787–2792 (1996). ArticleCASPubMed Google Scholar
Kaartinen, M., Penttila, A. & Kovanen, P. T. Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage. Atherosclerosis123, 123–131 (1996). ArticleCASPubMed Google Scholar
Masenga, J., Garbe, C., Wagner, J. & Orfanos, C. E. Staphylococcus aureus in atopic dermatitis and in nonatopic dermatitis. Int. J. Dermatol.29, 579–582 (1990). ArticleCASPubMed Google Scholar
Abeck, D. & Mempel, M. Staphylococcus aureus colonization in atopic dermatitis and its therapeutic implications. Br. J. Dermatol.139 (Suppl. 53), 13–16 (1998). ArticlePubMed Google Scholar
Razin, E. et al. IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, β-hexosaminidase, and histamine from cultured bone marrow-derived mouse mast cells. J. Exp. Med.157, 189–201 (1983). ArticleCASPubMed Google Scholar
Vensel, W. H., Komender, J. & Barnard, E. A. Non-pancreatic proteases of the chymotrypsin family. II. Two proteases from a mouse mast cell tumor. Biochim. Biophys. Acta250, 395–407 (1971). ArticleCASPubMed Google Scholar
Ochi, H. et al. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J. Exp. Med.190, 267–280 (1999). ArticleCASPubMedPubMed Central Google Scholar
Woodbury, R. G. & Neurath, H. Purification of an atypical mast cell protease and its levels in developing rats. Biochemistry17, 4298–4304 (1978). ArticleCASPubMed Google Scholar
Boesiger, J. et al. Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcε receptor I expression. J. Exp. Med.188, 1135–1145 (1998). ArticleCASPubMedPubMed Central Google Scholar
Qu, Z. et al. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am. J. Pathol.147, 564–573 (1995). CASPubMedPubMed Central Google Scholar
Reed, J. A., Albino, A. P. & McNutt, N. S. Human cutaneous mast cells express basic fibroblast growth factor. Lab. Invest.72, 215–222 (1995). CASPubMed Google Scholar
Razin, E., Mencia-Huerta, J. M., Lewis, R. A., Corey, E. J. & Austen, K. F. Generation of leukotriene C4 from a subclass of mast cells differentiated in vitro from mouse bone marrow. Proc. Natl Acad. Sci. USA79, 4665–4667 (1982). ArticleCASPubMedPubMed Central Google Scholar
Freeland, H. S., Schleimer, R. P., Schulman, E. S., Lichtenstein, L. M. & Peters, S. P. Generation of leukotriene B4 by human lung fragments and purified human lung mast cells. Am. Rev. Respir. Dis.138, 389–394 (1988). ArticleCASPubMed Google Scholar
Marshall, J. S., Gomi, K., Blennerhassett, M. G. & Bienenstock, J. Nerve growth factor modifies the expression of inflammatory cytokines by mast cells via a prostanoid-dependent mechanism. J. Immunol.162, 4271–4276 (1999). CASPubMed Google Scholar
Mencia-Huerta, J. M., Lewis, R. A., Razin, E. & Austen, K. F. Antigen-initiated release of platelet-activating factor (PAF-acether) from mouse bone marrow-derived mast cells sensitized with monoclonal IgE. J. Immunol.131, 2958–2964 (1983). CASPubMed Google Scholar
Plaut, M. et al. Mast cell lines produce lymphokines in response to cross-linkage of FcεRI or to calcium ionophores. Nature339, 64–67 (1989). ArticleCASPubMed Google Scholar
Burd, P. R. et al. Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines. J. Exp. Med.170, 245–257 (1989). References 139 and 140 were the first reports to show that mast cells can produce multiple cytokines, thereby opening up the possibility that these cells have a wider role in host defence than that previously envisaged. ArticleCASPubMed Google Scholar
Gordon, J. R., Burd, P. R. & Galli, S. J. Mast cells as a source of multifunctional cytokines. Immunol. Today11, 458–464 (1990). ArticleCASPubMed Google Scholar
Marshall, J. S., Gauldie, J., Nielsen, L. & Bienenstock, J. Leukemia inhibitory factor production by rat mast cells. Eur. J. Immunol.23, 2116–2120 (1993). ArticleCASPubMed Google Scholar
Stassen, M. et al. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-κB is decisively involved in the expression of IL-9. J. Immunol.166, 4391–4398 (2001). ArticleCASPubMed Google Scholar
Rumsaeng, V. et al. Human mast cells produce the CD4+ T lymphocyte chemoattractant factor, IL-16. J. Immunol.159, 2904–2910 (1997). CASPubMed Google Scholar
Smith, T. J., Ducharme, L. A. & Weis, J. H. Preferential expression of interleukin-12 or interleukin-4 by murine bone marrow mast cells derived in mast cell growth factor or interleukin-3. Eur. J. Immunol.24, 822–826 (1994). ArticleCASPubMed Google Scholar
Bissonnette, E. Y., Enciso, J. A. & Befus, A. D. TGF-β1 inhibits the release of histamine and tumor necrosis factor-α from mast cells through an autocrine pathway. Am. J. Respir. Cell Mol. Biol.16, 275–282 (1997). ArticleCASPubMed Google Scholar
Selvan, R. S., Butterfield, J. H. & Krangel, M. S. Expression of multiple chemokine genes by a human mast cell leukemia. J. Biol. Chem.269, 13893–13898 (1994). CASPubMed Google Scholar
Jia, G. Q. et al. Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic inflammation. J. Exp. Med.184, 1939–1951 (1996). ArticleCASPubMed Google Scholar
Moller, A. et al. Human mast cells produce IL-8. J. Immunol.151, 3261–3266 (1993). CASPubMed Google Scholar
Mori, Y. et al. Tyk2 is essential for IFN-α-induced gene expression in mast cells. Int. Arch. Allergy Immunol.134 (Suppl. 1), 25–29 (2004). ArticleCASPubMed Google Scholar
Bissonnette, E. Y., Hogaboam, C. M., Wallace, J. L. & Befus, A. D. Potentiation of tumor necrosis factor-α-mediated cytotoxicity of mast cells by their production of nitric oxide. J. Immunol.147, 3060–3065 (1991). CASPubMed Google Scholar
Gilchrist, M., McCauley, S. D. & Befus, A. D. Expression, localization and regulation of nitric oxide synthase (NOS) in human mast cell lines: effects on leukotriene production. Blood104, 462–469 (2004). ArticleCASPubMed Google Scholar
Malaviya, R. et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J. Immunol.152, 1907–1914 (1994). CASPubMed Google Scholar
Applequist, S. E., Wallin, R. P. & Ljunggren, H. G. Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int. Immunol.14, 1065–1074 (2002). ArticleCASPubMed Google Scholar
Munoz, S., Hernandez-Pando, R., Abraham, S. N. & Enciso, J. A. Mast cell activation by Mycobacterium tuberculosis: mediator release and role of CD48. J. Immunol.170, 5590–5596 (2003). ArticleCASPubMed Google Scholar
Segal, D. M., Taurog, J. D. & Metzger, H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc. Natl Acad. Sci. USA74, 2993–2997 (1977). ArticleCASPubMedPubMed Central Google Scholar
Sher, A., Hein, A., Moser, G. & Caulfield, J. P. Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cells. Lab. Invest.41, 490–499 (1979). CASPubMed Google Scholar
Andrasfalvy, M., Prechl, J., Hardy, T., Erdei, A. & Bajtay, Z. Mucosal type mast cells express complement receptor type 2 (CD21). Immunol. Lett.82, 29–34 (2002). ArticleCASPubMed Google Scholar
Schulman, E. S., Post, T. J., Henson, P. M. & Giclas, P. C. Differential effects of the complement peptides, C5a and C5a des Arg on human basophil and lung mast cell histamine release. J. Clin. Invest.81, 918–923 (1988). ArticleCASPubMedPubMed Central Google Scholar
el-Lati, S. G., Dahinden, C. A. & Church, M. K. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J. Invest. Dermatol.102, 803–806 (1994). ArticleCASPubMed Google Scholar
Hartmann, K. et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood89, 2863–2870 (1997). CASPubMed Google Scholar
Stenton, G. R. et al. Proteinase-activated receptor (PAR)-1 and -2 agonists induce mediator release from mast cells by pathways distinct from PAR-1 and PAR-2. J. Pharmacol. Exp. Ther.302, 466–474 (2002). ArticleCASPubMed Google Scholar
Love, K. S., Lakshmanan, R. R., Butterfield, J. H. & Fox, C. C. IFN-γ-stimulated enhancement of MHC class II antigen expression by the human mast cell line HMC-1. Cell Immunol.170, 85–90 (1996). ArticleCASPubMed Google Scholar
Lin, T. J. & Befus, A. D. Differential regulation of mast cell function by IL-10 and stem cell factor. J. Immunol.159, 4015–4023 (1997). CASPubMed Google Scholar
Lin, T. J., Issekutz, T. B. & Marshall, J. S. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1α. J. Immunol.165, 211–220 (2000). ArticleCASPubMed Google Scholar
Malaviya, R., Ikeda, T. & Abraham, S. N. Contribution of mast cells to bacterial clearance and their proliferation during experimental cystitis induced by type 1 fimbriated E. coli. Immunol. Lett.91, 103–111 (2004). ArticleCASPubMed Google Scholar
Sorden, S. D. & Castleman, W. L. Virus-induced increases in bronchiolar mast cells in Brown Norway rats are associated with both local mast cell proliferation and increases in blood mast cell precursors. Lab. Invest.73, 197–204 (1995). CASPubMed Google Scholar
Jolly, S., Detilleux, J. & Desmecht, D. Extensive mast cell degranulation in bovine respiratory syncytial virus-associated paroxystic respiratory distress syndrome. Vet. Immunol. Immunopathol.97, 125–136 (2004). ArticleCASPubMed Google Scholar
Miller, H. R., Woodbury, R. G., Huntley, J. F. & Newlands, G. Systemic release of mucosal mast-cell protease in primed rats challenged with Nippostrongylus brasiliensis. Immunology49, 471–479 (1983). CASPubMedPubMed Central Google Scholar
Matsuda, H., Fukui, K., Kiso, Y. & Kitamura, Y. Inability of genetically mast cell-deficient W/Wv mice to acquire resistance against larval Haemaphysalis longicornis ticks. J. Parasitol.71, 443–448 (1985). ArticleCASPubMed Google Scholar
Nawa, Y., Kiyota, M., Korenaga, M. & Kotani, M. Defective protective capacity of W/Wv mice against Strongyloides ratti infection and its reconstitution with bone marrow cells. Parasite Immunol.7, 429–438 (1985). ArticleCASPubMed Google Scholar
Ha, T. Y., Reed, N. D. & Crowle, P. K. Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect. Immun.41, 445–447 (1983). CASPubMedPubMed Central Google Scholar
Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. & Miller, H. R. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J. Exp. Med.192, 1849–1856 (2000). ArticleCASPubMedPubMed Central Google Scholar
Abe, T. & Nawa, Y. Worm expulsion and mucosal mast cell response induced by repetitive IL-3 administration in _Strongyloides ratti_-infected nude mice. Immunology63, 181–185 (1988). CASPubMedPubMed Central Google Scholar