Dectin-1: a signalling non-TLR pattern-recognition receptor (original) (raw)
Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today13, 11?16 (1992). CASPubMed Google Scholar
Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol.26, 447?454 (2005). CASPubMed Google Scholar
Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell111, 927?930 (2002). CASPubMed Google Scholar
Doyle, S. E. et al. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med.199, 81?90 (2004). CASPubMedPubMed Central Google Scholar
Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science304, 1014?1018 (2004). CASPubMed Google Scholar
Ezekowitz, R. A., Sastry, K., Bailly, P. & Warner, A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med.172, 1785?1794 (1990). CASPubMed Google Scholar
Brown, E. J. Complement receptors and phagocytosis. Curr. Opin. Immunol.3, 76?82 (1991). CASPubMed Google Scholar
Peiser, L., Gough, P. J., Kodama, T. & Gordon, S. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect. Immun.68, 1953?1963 (2000). CASPubMedPubMed Central Google Scholar
Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell80, 603?609 (1995). CASPubMed Google Scholar
Herre, J. et al. Dectin-1 utilizes novel mechanisms for yeast phagocytosis in macrophages. Blood104, 4038?4045 (2004). CASPubMed Google Scholar
Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med.197, 1107?1117 (2003). CASPubMedPubMed Central Google Scholar
Underhill, D. M., Rossnagle, E., Lowell, C. A. & Simmons, R. M. Dectin-1 activates SYK tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood106, 2543?2550 (2005). CASPubMedPubMed Central Google Scholar
Goldstein, I. M., Roos, D., Kaplan, H. B. & Weissmann, G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J. Clin. Invest.56, 1155?1163 (1975). CASPubMedPubMed Central Google Scholar
Wright, S. D. & Silverstein, S. C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med.158, 2016?2023 (1983). CASPubMed Google Scholar
Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature433, 523?527 (2005). CASPubMed Google Scholar
Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nature Immunol.6, 565?570 (2005). References 15 and 16 show that non-TLR PRRs can contribute to inflammatory responses by the presentation of PAMPS. CAS Google Scholar
Swain, S. D., Lee, S. J., Nussenzweig, M. C. & Harmsen, A. G. Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect. Immun.71, 6213?6221 (2003). CASPubMedPubMed Central Google Scholar
Lee, S. J., Zheng, N. Y., Clavijo, M. & Nussenzweig, M. C. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun.71, 437?445 (2003). CASPubMedPubMed Central Google Scholar
Brown, G. D. et al. dectin-1 mediates the biological effects of β-glucan. J. Exp. Med.197, 1119?1124 (2003). This article, together with reference 11, shows that signalling from dectin-1 directly contributes to the inflammatory response. CASPubMedPubMed Central Google Scholar
Yokoyama, W. M. et al. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J. Immunol.147, 3229?3236 (1991). CASPubMed Google Scholar
Ariizumi, K. et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem.275, 20157?20167 (2000). CASPubMed Google Scholar
Sawamura, T. et al. An endothelial receptor for oxidized low-density lipoprotein. Nature386, 73?77 (1997). CASPubMed Google Scholar
Marshall, A. S. et al. Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes. J. Biol. Chem.279, 14792?14802 (2004). CASPubMed Google Scholar
Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol.30, 697?704 (2000). CASPubMed Google Scholar
Sobanov, Y. et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur. J. Immunol.31, 3493?3503. (2001). CASPubMed Google Scholar
Chen, M., Masaki, T. & Sawamura, T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther.95, 89?100 (2002). CASPubMed Google Scholar
Brown, G. D. & Gordon, S. Immune recognition: A new receptor for β-glucans. Nature413, 36?37 (2001). CASPubMed Google Scholar
Shimaoka, T. et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J. Immunol.166, 5108?5114 (2001). CASPubMed Google Scholar
Delneste, Y. et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17, 353?362 (2002). CASPubMed Google Scholar
Oka, K. et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc. Natl. Acad. Sci. USA95, 9535?9540 (1998). CASPubMedPubMed Central Google Scholar
Rogers, N. C. et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity22, 507?517 (2005). This paper, together with reference 12, is the first demonstration that signalling from C-type lectins occurs through SYK and that this can be mediated by a single YXXL motif. CASPubMed Google Scholar
Mason, L. H. et al. The Ly-49D receptor activates murine natural killer cells. J. Exp. Med.184, 2119?2128 (1996). CASPubMedPubMed Central Google Scholar
Diefenbach, A. et al. Selective associations with signalling proteins determine stimulatory versus costimulatory activity of NKG2D. Nature Immunol.3, 1142?1149 (2002). CAS Google Scholar
Gilfillan, S., Ho, E. L., Cella, M., Yokoyama, W. M. & Colonna, M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nature Immunol.3, 1150?1155 (2002). CAS Google Scholar
Hermanz-Falcon, P., Arce, I., Roda-Navarro, P. & Fernandez-Ruiz, E. Cloning of human DECTIN-1, a novel C-type lectin-like receptor gene expressed on dendritic cells. Immunogenetics53, 288?295 (2001). CASPubMed Google Scholar
Willment, J. A., Gordon, S. & Brown, G. D. Characterisation of the human β-glucan receptor and its alternatively spliced isoforms. J. Biol. Chem.276, 43818?43823 (2001). CASPubMed Google Scholar
Yokota, K., Takashima, A., Bergstresser, P. R. & Ariizumi, K. Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene272, 51?60 (2001). CASPubMed Google Scholar
Willment, J. A. et al. The human β-glucan receptor is widely expressed and functionally equivalent to murine dectin-1 on primary cells. Eur. J. Immunol.35, 1539?1547 (2005). CASPubMed Google Scholar
Riedl, E., Tada, Y. & Udey, M. C. Identification and characterization of an alternatively spliced isoform of mouse Langerin/CD207. J. Invest. Dermatol.123, 78?86 (2004). CASPubMed Google Scholar
Taylor, P. R. et al. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol.169, 3876?3882 (2002). CASPubMed Google Scholar
Reid, D. M. et al. Expression of the β-glucan receptor, dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J. Leukoc. Biol.76, 86?94 (2004). CASPubMed Google Scholar
Willment, J. A. et al. Dectin-1 expression and function is enhanced on alternatively activated and GM-CSF treated macrophages and negatively regulated by IL-10, dexamethasone and LPS. J. Immunol.171, 4569?4573 (2003). CASPubMed Google Scholar
Weis, W. I., Taylor, M. E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev.163, 19?34 (1998). CASPubMed Google Scholar
Pavlicek, J. et al. Molecular characterization of binding of calcium and carbohydrates by an early activation antigen of lymphocytes CD69. Biochemistry42, 9295?9306 (2003). CASPubMed Google Scholar
Gange, C. T. et al. Characterization of sugar binding by osteoclast inhibitory lectin. J. Biol. Chem.279, 29043?29049 (2004). CASPubMed Google Scholar
Adachi, Y. et al. Characterization of β-glucan recognition site on C-type lectin, dectin 1. Infect. Immun.72, 4159?4171 (2004). CASPubMedPubMed Central Google Scholar
Grunebach, F., Weck, M. M., Reichert, J. & Brossart, P. Molecular and functional characterization of human dectin-1. Exp. Hematol.30, 1309?1315 (2002). CASPubMed Google Scholar
Yokoyama, W. M. & Plougastel, B. F. Immune functions encoded by the natural killer gene complex. Nature Rev. Immunol.3, 304?316 (2003). CAS Google Scholar
Iizuka, K., Naidenko, O. V., Plougastel, B. F., Fremont, D. H. & Yokoyama, W. M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nature Immunol.4, 801?807 (2003). CAS Google Scholar
Steele, C. et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the dectin-1 β-glucan recptor. J. Exp. Med.198, 1677?1688 (2003). CASPubMedPubMed Central Google Scholar
Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature401, 811?815 (1999). This is the first paper showing the involvement of TLR2 in the inflammatory response to zymosan. CASPubMed Google Scholar
Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA97, 13766?13771 (2000). CASPubMedPubMed Central Google Scholar
Kataoka, K., Muta, T., Yamazaki, S. & Takeshige, K. Activation of macrophages by linear (1, 3)-β-D-glucans. J. Biol. Chem.277, 36825?36831 (2002). CASPubMed Google Scholar
Young, S. H., Ye, J., Frazer, D. G., Shi, X. & Castranova, V. Molecular mechanism of tumor necrosis factor-α production in 1,3-β-glucan (zymosan)-activated macrophages. J. Biol. Chem.276, 20781?20787 (2001). CASPubMed Google Scholar
Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature391, 703?707 (1998). CASPubMed Google Scholar
Van den Herik-Oudijk, I. E., Capel, P. J., van der Bruggen, T. & Van de Winkel, J. G. Identification of signaling motifs within human Fcg RIIa and Fcg RIIb isoforms. Blood85, 2202?2211 (1995). CASPubMed Google Scholar
Pitcher, L. A. & van Oers, N. S. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol.24, 554?560 (2003). CASPubMed Google Scholar
Crowley, M. T. et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med.186, 1027?1039 (1997). CASPubMedPubMed Central Google Scholar
Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature378, 298?302 (1995). CASPubMed Google Scholar
Cambi, A. & Figdor, C. G. Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell. Biol.15, 539?546 (2003). CASPubMed Google Scholar
Curtis, B. M., Scharnowske, S. & Watson, A. J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA89, 8356?8360 (1992). CASPubMedPubMed Central Google Scholar
Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med.197, 7?17 (2003). This article shows that C-type lectin signalling can suppress TLR-mediated inflammatory responses. CASPubMedPubMed Central Google Scholar
Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunol.1, 533?540 (2000). CAS Google Scholar
Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med.189, 1777?1782 (1999). CASPubMedPubMed Central Google Scholar
Mantegazza, A. R. et al. CD63 Tetraspanin slows down cell migration and translocates to the endosomal/lysosomal/MIICs route after extracellular stimuli in human immature dendritic cells. Blood104, 1183?1190 (2004). CASPubMed Google Scholar
Yoshitomi, H. et al. A role for fungal β-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med.201, 949?960 (2005). This is the first report of a non-TLR PRR directly contributing to the development of autoimmunity. CASPubMedPubMed Central Google Scholar
Romani, L. Immunity to fungal infections. Nature Rev. Immunol.4, 11?24 (2004). CAS Google Scholar
Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev.26, 239?256 (2002). CASPubMed Google Scholar
Gantner, B. N., Simmons, R. M. & Underhill, D. M. dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J.24, 1277?1286 (2005). This article shows that fungi can avoid recognition by dectin-1 by masking their β-glucan. CASPubMedPubMed Central Google Scholar
Torosantucci, A. et al. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med.202, 597?606 (2005). CASPubMedPubMed Central Google Scholar
Viriyakosol, S., Fierer, J., Brown, G. D. & Kirkland, T. N. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and dectin-1. Infect. Immun.73, 1553?1560 (2005). CASPubMedPubMed Central Google Scholar
Vazquez-Torres, A., Jones-Carson, J., Wagner, R. D., Warner, T. & Balish, E. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect. Immun.67, 670?674 (1999). CASPubMedPubMed Central Google Scholar
Belkaid, Y. & Rouse, B. T. Natural regulatory T cells in infectious disease. Nature Immunol.6, 353?360 (2005). CAS Google Scholar
Netea, M. G. et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol.172, 3712?3718 (2004). CASPubMed Google Scholar
Montagnoli, C. et al. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J. Immunol.169, 6298?6308 (2002). CASPubMed Google Scholar
Bellocchio, S. et al. The contribution of the toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol.172, 3059?3069 (2004). A comprehensive study of the role of selected TLRs in fungal infection, using knockout mice. CASPubMed Google Scholar
Villamon, E. et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect.6, 1?7 (2004). CASPubMed Google Scholar
Netea, M. G., Van der Meer, J. W. & Kullberg, B. J. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol.12, 484?488 (2004). CASPubMed Google Scholar
Gale, C. A. et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science279, 1355?1358 (1998). CASPubMed Google Scholar
Lo, H. J. et al. Nonfilamentous C. albicans mutants are avirulent. Cell90, 939?949 (1997). CASPubMed Google Scholar
Gow, N. A., Brown, A. J. & Odds, F. C. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol.5, 366?371 (2002). CASPubMed Google Scholar
d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med.191, 1661?1674 (2000). This paper describes the different response of DCs to yeast and hyphal forms ofC. albicans. CASPubMedPubMed Central Google Scholar
Cross, C. E. & Bancroft, G. J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and β-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun.63, 2604?2611 (1995). CASPubMedPubMed Central Google Scholar
Borges-Walmsley, M. I., Chen, D., Shu, X. & Walmsley, A. R. The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol.10, 80?87 (2002). CASPubMed Google Scholar
Williams, D. L. et al. Pre-clinical safety evaluation of soluble glucan. Int. J. Immunopharmacol.10, 405?414 (1988). CASPubMed Google Scholar
Adams, D. S. et al. PGG-Glucan activates NF-κB-like and NF-IL-6-like transcription factor complexes in a murine monocytic cell line. J. Leukoc. Biol.62, 865?873 (1997). CASPubMed Google Scholar
Battle, J. et al. Ligand binding to the (1→3)-β-D-glucan receptor stimulates NFκB activation, but not apoptosis in U937 cells. Biochem. Biophys. Res. Commun.249, 499?504 (1998). CASPubMed Google Scholar
Williams, D. L. et al. Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis. J. Immunol.172, 449?456 (2004). CASPubMed Google Scholar
Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature423, 356?361 (2003). CASPubMed Google Scholar
Keystone, E. C., Schorlemmer, H. U., Pope, C. & Allison, A. C. Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum.20, 1396?1401 (1977). CASPubMed Google Scholar
Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature426, 454?460 (2003). CASPubMed Google Scholar
Douwes, J. (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air15, 160?169 (2005). CASPubMed Google Scholar
Rylander, R. & Lin, R. H. (1→3)-β-D-glucan- relationship to indoor air-related symptoms, allergy and asthma. Toxicology152, 47?52. (2000). CASPubMed Google Scholar
Evans, S. E. et al. Pneumocystis cell wall β-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-κB-dependent mechanisms. Am. J. Respir. Cell Mol. Biol.32, 490?497 (2005). CASPubMedPubMed Central Google Scholar
Hong, F. et al. Mechanism by which orally administered β-1, 3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol.173, 797?806 (2004). CASPubMed Google Scholar
Rice, P. J. et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Ther.314, 1079?1086 (2005). CASPubMed Google Scholar
Thornton, B. P., Vetvicka, V., Pitman, M., Goldman, R. C. & Ross, G. D. Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol.156, 1235?1246 (1996). CASPubMed Google Scholar
Xia, Y. & Ross, G. D. Generation of recombinant fragments of CD11b expressing the functional β-glucan-binding lectin site of CR3 (CD11b/CD18). J. Immunol.162, 7285?7293 (1999). CASPubMed Google Scholar
Di Renzo, L., Yefenof, E. & Klein, E. The function of human NK cells is enhanced by β-glucan, a ligand of CR3 (CD11b/CD18). Eur. J. Immunol.21, 1755?1758 (1991). CASPubMed Google Scholar
Ross, G. D. et al. Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1. Blood66, 882?890 (1985). CASPubMed Google Scholar
Tsikitis, V. L., Morin, N. A., Harrington, E. O., Albina, J. E. & Reichner, J. S. The lectin-like domain of complement receptor 3 protects endothelial barrier function from activated neutrophils. J. Immunol.173, 1284?1291 (2004). CASPubMed Google Scholar
Xia, Y. et al. The β-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol.162, 2281?2290 (1999). CASPubMed Google Scholar
Hahn, P. Y. et al. Pneumocystis carinii cell wall β-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem.278, 2043?2050 (2003). CASPubMed Google Scholar
Wakshull, E. et al. PGG-glucan, a soluble β-(1, 3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-κB-like factor in human PMN: evidence for a glycosphingolipid β-(1, 3)-glucan receptor. Immunopharmacology41, 89?107 (1999). CASPubMed Google Scholar
Zimmerman, J. W. et al. A novel carbohydrate-glycosphingolipid interaction between a β-(1?3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J. Biol. Chem.273, 22014?22020 (1998). CASPubMed Google Scholar
Jimenez-Lucho, V., Ginsburg, V. & Krivan, H. C. Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Gal β-1?4Glc β-1?1Cer), a possible adhesion receptor for yeasts. Infect. Immun.58, 2085?2090 (1990). CASPubMedPubMed Central Google Scholar
Iwabuchi, K. & Nagaoka, I. Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood100, 1454?1464 (2002). CASPubMed Google Scholar
Rice, P. J. et al. Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-β-D-glucans. J. Leukoc. Biol.72, 140?146 (2002). CASPubMed Google Scholar
Dushkin, M. I., Safina, A. F., Vereschagin, E. I. & Schwartz, Y. Carboxymethylated β-1, 3-glucan inhibits the binding and degradation of acetylated low density lipoproteins in macrophages in vitro and modulates their plasma clearance in vivo. Cell Biochem. Funct.14, 209?217 (1996). CASPubMed Google Scholar
Vereschagin, E. I. et al. Soluble glucan protects against endotoxin shock in the rat: the role of the scavenger receptor. Shock9, 193?198 (1998). CASPubMed Google Scholar
Pearson, A., Lux, A. & Krieger, M. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA92, 4056?4060 (1995). CASPubMedPubMed Central Google Scholar
Masoud, M., Rudensky, B., Elstein, D. & Zimran, A. Chitotriosidase deficiency in survivors of Candida sepsis. Blood Cells Mol. Dis.29, 116?118 (2002). CASPubMed Google Scholar
Yauch, L. E., Mansour, M. K., Shoham, S., Rottman, J. B. & Levitz, S. M. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun.72, 5373?5382 (2004). CASPubMedPubMed Central Google Scholar
Lee, S. J., Gonzalez-Aseguinolaza, G. & Nussenzweig, M. C. Disseminated candidiasis and hepatic malarial infection in mannose-binding-lectin-A-deficient mice. Mol. Cell. Biol.22, 8199?8203 (2002). CASPubMedPubMed Central Google Scholar
Hogaboam, C. M., Takahashi, K., Ezekowitz, R. A., Kunkel, S. L. & Schuh, J. M. Mannose-binding lectin deficiency alters the development of fungal asthma: effects on airway response, inflammation, and cytokine profile. J. Leukoc. Biol.75, 805?814 (2004). CASPubMed Google Scholar
Garlanda, C. et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature420, 182?186 (2002). CASPubMed Google Scholar
Atochina, E. N. et al. Enhanced lung injury and delayed clearance of Pneumocystis carinii in surfactant protein A-deficient mice: attenuation of cytokine responses and reactive oxygen-nitrogen species. Infect. Immun.72, 6002?6011 (2004). CASPubMedPubMed Central Google Scholar
Linke, M. J. et al. Immunosuppressed surfactant protein A-deficient mice have increased susceptibility to Pneumocystis carinii infection. J. Infect. Dis.183, 943?952 (2001). CASPubMed Google Scholar
Atochina, E. N. et al. Delayed clearance of Pneumocystis carinii infection, increased inflammation, and altered nitric oxide metabolism in lungs of surfactant protein-D knockout mice. J. Infect. Dis.189, 1528?1539 (2004). CASPubMed Google Scholar
Biondo, C. et al. MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur. J. Immunol.35, 870?878 (2005). CASPubMed Google Scholar
Netea, M. G. et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis.185, 1483?1489 (2002). CASPubMed Google Scholar