New developments in FcεRI regulation, function and inhibition (original) (raw)
Kinet, J. P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol.17, 931–972 (1999). ArticleCASPubMed Google Scholar
Letourneur, O., Sechi, S., Willette-Brown, J., Robertson, M. W. & Kinet, J. P. Glycosylation of human truncated FcεRI α chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem.270, 8249–8256 (1995). ArticleCASPubMed Google Scholar
Wurzburg, B. A., Garman, S. C. & Jardetzky, T. S. Structure of the human IgE–Fc Cε 3–Cε4 reveals conformational flexibility in the antibody effector domains. Immunity13, 375–385 (2000). ArticleCASPubMed Google Scholar
Wan, T. et al. The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nature Immunol.3, 681–686 (2002). ArticleCAS Google Scholar
Mackay, G. A. et al. Mutagenesis within human FcεRIα differentially affects human and murine IgE binding. J. Immunol.168, 1787–1795 (2002). ArticleCASPubMed Google Scholar
Garman, S. C., Kinet, J. P. & Jardetzky, T. S. Crystal structure of the human high-affinity IgE receptor. Cell95, 951–961 (1998). ArticleCASPubMed Google Scholar
Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P. & Jardetzky, T. S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRIα. Nature406, 259–266 (2000). This study describes the interaction of IgE with FcεRI and provides valuable information for the design of inhibitors of IgE binding to FcεRI. ArticleCASPubMed Google Scholar
Cambier, J. C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol.155, 3281–3285 (1995). CASPubMed Google Scholar
Hasegawa, S. et al. Functional expression of the high affinity receptor for IgE (FcεRI) in human platelets and its' intracellular expression in human megakaryocytes. Blood93, 2543–2551 (1999). CASPubMed Google Scholar
Gounni, A. S. et al. Human neutrophils express the high-affinity receptor for immunoglobulin E (FcεRI): role in asthma. FASEB J.15, 940–949 (2001). ArticleCASPubMed Google Scholar
Joseph, M. et al. Expression and functions of the high-affinity IgE receptor on human platelets and megakaryocyte precursors. Eur. J. Immunol.27, 2212–2218 (1997). ArticleCASPubMed Google Scholar
Fiebiger, E., Tortorella, D., Jouvin, M. H., Kinet, J. P. & Ploegh, H. L. Cotranslational endoplasmic reticulum assembly of FcεRI controls the formation of functional IgE-binding receptors. J. Exp. Med.201, 267–277 (2005). ArticleCASPubMedPubMed Central Google Scholar
Geiger, E. et al. IL-4 induces the intracellular expression of the α chain of the high-affinity receptor for IgE in _in vitro_-generated dendritic cells. J. Allergy Clin. Immunol.105, 150–156 (2000). ArticleCASPubMed Google Scholar
Novak, N. et al. Evidence for a differential expression of the FcεRIγ chain in dendritic cells of atopic and nonatopic donors. J. Clin. Invest.111, 1047–1056 (2003). ArticleCASPubMedPubMed Central Google Scholar
Toru, H. et al. Induction of the high-affinity IgE receptor (FcεRI) on human mast cells by IL-4. Int. Immunol.8, 1367–1373 (1996). ArticleCASPubMed Google Scholar
Xia, H. Z. et al. Effect of recombinant human IL-4 on tryptase, chymase, and Fcε receptor type I expression in recombinant human stem cell factor-dependent fetal liver-derived human mast cells. J. Immunol.159, 2911–2921 (1997). CASPubMed Google Scholar
Hasegawa, M. et al. Regulation of the human FcεRIα-chain distal promoter. J. Immunol.170, 3732–3738 (2003). ArticleCASPubMed Google Scholar
Malveaux, F. J., Conroy, M. C., Adkinson, N. F., Jr. & Lichtenstein, L. M. IgE receptors on human basophils. Relationship to serum IgE concentration. J. Clin. Invest.62, 176–181 (1978). ArticleCASPubMedPubMed Central Google Scholar
Maurer, D. et al. Expression of functional high affinity immunoglobulin E receptors (FcεRI) on monocytes of atopic individuals. J. Exp. Med.179, 745–750 (1994). ArticleCASPubMed Google Scholar
Sihra, B. S., Kon, O. M., Grant, J. A. & Kay, A. B. Expression of high-affinity IgE receptors (FcεRI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J. Allergy Clin. Immunol.99, 699–706 (1997). ArticleCASPubMed Google Scholar
Semper, A. E. et al. Surface expression of FcεRI on Langerhans' cells of clinically uninvolved skin is associated with disease activity in atopic dermatitis, allergic asthma, and rhinitis. J. Allergy Clin. Immunol.112, 411–419 (2003). ArticleCASPubMed Google Scholar
Wollenberg, A., Kraft, S., Hanau, D. & Bieber, T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Invest. Dermatol.106, 446–453 (1996). ArticleCASPubMed Google Scholar
Ryan, J. J., Kinzer, C. A. & Paul, W. E. Mast cells lacking the high affinity immunoglobulin E receptor are deficient in FcεRIγ messenger RNA. J. Exp. Med.182, 567–574 (1995). ArticleCASPubMed Google Scholar
Kraft, S., Wessendorf, J. H., Hanau, D. & Bieber, T. Regulation of the high affinity receptor for IgE on human epidermal Langerhans cells. J. Immunol.161, 1000–1006 (1998). CASPubMed Google Scholar
Albrecht, B., Woisetschlager, M. & Robertson, M. W. Export of the high affinity IgE receptor from the endoplasmic reticulum depends on a glycosylation-mediated quality control mechanism. J. Immunol.165, 5686–5694 (2000). ArticleCASPubMed Google Scholar
Miller, L., Blank, U., Metzger, H. & Kinet, J. P. Expression of high-affinity binding of human immunoglobulin E by transfected cells. Science244, 334–337 (1989). ArticleCASPubMed Google Scholar
Blank, U. et al. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature337, 187–189 (1989). ArticleCASPubMed Google Scholar
Blank, U., Ra, C. S. & Kinet, J. P. Characterization of truncated α chain products from human, rat, and mouse high affinity receptor for immunoglobulin E. J. Biol. Chem.266, 2639–2646 (1991). CASPubMed Google Scholar
Donnadieu, E., Jouvin, M. H. & Kinet, J. P. A second amplifier function for the allergy-associated FcεRI-β subunit. Immunity12, 515–523 (2000). ArticleCASPubMed Google Scholar
Donnadieu, E. et al. Competing functions encoded in the allergy-associated FceRIβ gene. Immunity18, 665–674 (2003). ArticleCASPubMed Google Scholar
Quarto, R., Kinet, J. P. & Metzger, H. Coordinate synthesis and degradation of the α-, β- and γ-subunits of the receptor for immunoglobulin E. Mol. Immunol.22, 1045–1051 (1985). ArticleCASPubMed Google Scholar
Furuichi, K., Rivera, J. & Isersky, C. The receptor for immunoglobulin E on rat basophilic leukemia cells: effect of ligand binding on receptor expression. Proc. Natl Acad. Sci. USA82, 1522–1525 (1985). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, M. et al. IgE enhances mouse mast cell FcεRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J. Exp. Med.185, 663–672 (1997). ArticleCASPubMedPubMed Central Google Scholar
MacGlashan, D. W., Jr. et al. Down-regulation of FcεRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J. Immunol.158, 1438–1445 (1997). CASPubMed Google Scholar
Lantz, C. S. et al. IgE regulates mouse basophil FcεRI expression in vivo. J. Immunol.158, 2517–2521 (1997). CASPubMed Google Scholar
Yano, K. et al. Production of macrophage inflammatory protein-1α by human mast cells: increased anti-IgE-dependent secretion after IgE-dependent enhancement of mast cell IgE-binding ability. Lab. Invest.77, 185–193 (1997). CASPubMed Google Scholar
Borkowski, T. A., Jouvin, M. H., Lin, S. Y. & Kinet, J. P. Minimal requirements for IgE-mediated regulation of surface FcεRI. J. Immunol.167, 1290–1296 (2001). ArticleCASPubMed Google Scholar
Wedemeyer, J., Tsai, M. & Galli, S. J. Roles of mast cells and basophils in innate and acquired immunity. Curr. Opin. Immunol.12, 624–631 (2000). ArticleCASPubMed Google Scholar
Galli, S. J., Maurer, M. & Lantz, C. S. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol.11, 53–59 (1999). ArticleCASPubMed Google Scholar
Wershil, B. K., Mekori, Y. A., Murakami, T. & Galli, S. J. 125I-fibrin deposition in IgE-dependent immediate hypersensitivity reactions in mouse skin. Demonstration of the role of mast cells using genetically mast cell-deficient mice locally reconstituted with cultured mast cells. J. Immunol.139, 2605–2614 (1987). CASPubMed Google Scholar
Wershil, B. K., Wang, Z. S., Gordon, J. R. & Galli, S. J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-α. J. Clin. Invest.87, 446–453 (1991). ArticleCASPubMedPubMed Central Google Scholar
Galli, S. J. et al. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol.23, 749–786 (2005). ArticleCASPubMed Google Scholar
Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity14, 801–811 (2001). References 43 and 44 were the first to describe the anti-apoptotic effect of IgE binding to FcεRI. ArticleCASPubMed Google Scholar
Kitaura, J. et al. Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI. Proc. Natl Acad. Sci. USA100, 12911–12916 (2003). In this paper the authors show that different IgE clones have a different capacity for FcεRI aggregation. ArticleCASPubMedPubMed Central Google Scholar
Tanaka, S., Takasu, Y., Mikura, S., Satoh, N. & Ichikawa, A. Antigen-independent induction of histamine synthesis by immunoglobulin E in mouse bone marrow-derived mast cells. J. Exp. Med.196, 229–235 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kitaura, J. et al. Regulation of highly cytokinergic IgE-induced mast cell adhesion by Src, Syk, Tec, and protein kinase C family kinases. J. Immunol.174, 4495–4504 (2005). ArticleCASPubMed Google Scholar
Kitaura, J. et al. IgE− and IgE+Ag-mediated mast cell migration in an autocrine/paracrine fashion. Blood.105, 3222–3229 (2005). ArticleCASPubMed Google Scholar
Kohno, M., Yamasaki, S., Tybulewicz, V. L. & Saito, T. Rapid and large amount of autocrine IL-3 production is responsible for mast cell survival by IgE in the absence of antigen. Blood105, 2059–2065 (2005). ArticleCASPubMed Google Scholar
Kitaura, J. et al. Early divergence of Fcε receptor I signals for receptor up-regulation and internalization from degranulation, cytokine production, and survival. J. Immunol.173, 4317–4323 (2004). ArticleCASPubMed Google Scholar
Pandey, V., Mihara, S., Fensome-Green, A., Bolsover, S. & Cockcroft, S. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca2+, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line. J. Immunol.172, 4048–4058 (2004). ArticleCASPubMed Google Scholar
Kraft, S. & Novak, N. Fc receptors as determinants of allergic reactions. Trends Immunol.27, 88–95 (2006). ArticleCASPubMed Google Scholar
Maurer, D. et al. Fcε receptor I on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J. Immunol.161, 2731–2739 (1998). CASPubMed Google Scholar
Maurer, D. et al. Peripheral blood dendritic cells express FcεRI as a complex composed of FcεRIα- and FcεRI γ-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol.157, 607–616 (1996). CASPubMed Google Scholar
Jurgens, M., Wollenberg, A., Hanau, D., de la Salle, H. & Bieber, T. Activation of human epidermal Langerhans cells by engagement of the high affinity receptor for IgE, FcεRI. J. Immunol.155, 5184–5189 (1995). CASPubMed Google Scholar
Kraft, S., Novak, N., Katoh, N., Bieber, T. & Rupec, R. A. Aggregation of the high-affinity IgE receptor FcεRI on human monocytes and dendritic cells induces NF-κB activation. J. Invest. Dermatol.118, 830–837 (2002). ArticleCASPubMed Google Scholar
Kraft, S. et al. Enhanced expression and activity of protein-tyrosine kinases establishes a functional signaling pathway only in FcεRIhigh Langerhans cells from atopic individuals. J. Invest. Dermatol.119, 804–811 (2002). ArticleCASPubMed Google Scholar
Reich, K. et al. Engagement of the FcεRI stimulates the production of IL-16 in Langerhans cell-like dendritic cells. J. Immunol.167, 6321–6329 (2001). ArticleCASPubMed Google Scholar
Novak, N. et al. FcεRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J. Allergy Clin. Immunol.113, 949–957 (2004). ArticleCASPubMed Google Scholar
Novak, N. et al. A reducing microenvironment leads to the generation of FcεRIhigh inflammatory dendritic epidermal cells (IDEC). J. Invest. Dermatol.119, 842–849 (2002). ArticleCASPubMed Google Scholar
Novak, N. et al. Characterization of FcεRI-bearing CD123 blood dendritic cell antigen-2 plasmacytoid dendritic cells in atopic dermatitis. J. Allergy Clin. Immunol.114, 364–370 (2004). ArticleCASPubMed Google Scholar
Grewe, M. et al. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J. Invest. Dermatol.105, 407–410 (1995). ArticleCASPubMed Google Scholar
Schroeder, J. T. et al. TLR9- and FcεRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression. J. Immunol.175, 5724–5731 (2005). ArticleCASPubMed Google Scholar
Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med.192, 1441–1452 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bryce, P. J. et al. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity20, 381–392 (2004). This is an interesting study on the antigen-independent role of IgE, FcεRI and mast cells in cutaneous hypersensitivity. ArticleCASPubMed Google Scholar
Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P. & Swanson, B. J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nature Immunol.4, 974–981 (2003). ArticleCAS Google Scholar
Meng, H. et al. Mast cells induce T-cell adhesion to human fibroblasts by regulating intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. J. Invest. Dermatol.105, 789–796 (1995). ArticleCASPubMed Google Scholar
Walsh, L. J., Trinchieri, G., Waldorf, H. A., Whitaker, D. & Murphy, G. F. Human dermal mast cells contain and release tumor necrosis factor α, which induces endothelial leukocyte adhesion molecule 1. Proc. Natl Acad. Sci. USA88, 4220–4224 (1991). ArticleCASPubMedPubMed Central Google Scholar
Dombrowicz, D. et al. Role of the high affinity immunoglobulin E receptor in bacterial translocation and intestinal inflammation. J. Exp. Med.193, 25–34 (2001). ArticleCASPubMedPubMed Central Google Scholar
Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcεRI. Nature402, B24–B30 (1999). ArticleCASPubMed Google Scholar
Rivera, J. & Gilfillan, A. M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol.117, 1214–1225 (2006). ArticleCASPubMed Google Scholar
Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nature Rev. Immunol.6, 218–230 (2006). ArticleCAS Google Scholar
Parravicini, V. et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nature Immunol.3, 741–748 (2002). This is the first study to separate FcεRI signalling into two distinct pathways. ArticleCAS Google Scholar
El-Hillal, O., Kurosaki, T., Yamamura, H., Kinet, J. P. & Scharenberg, A. M. Syk kinase activation by a Src kinase-initiated activation loop phosphorylation chain reaction. Proc. Natl Acad. Sci. USA94, 1919–1924 (1997). ArticleCASPubMedPubMed Central Google Scholar
Pivniouk, V. I. et al. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J. Clin. Invest.103, 1737–1743 (1999). CASPubMedPubMed Central Google Scholar
Saitoh, S. et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity12, 525–535 (2000). ArticleCASPubMed Google Scholar
Kawakami, Y. et al. Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation. J. Immunol.165, 1210–1219 (2000). ArticleCASPubMed Google Scholar
Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J.17, 1973–1985 (1998). ArticleCASPubMedPubMed Central Google Scholar
Scharenberg, A. M. et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J.17, 1961–1972 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nishizumi, H. & Yamamoto, T. Impaired tyrosine phosphorylation and Ca2+ mobilization, but not degranulation, in lyn-deficient bone marrow-derived mast cells. J. Immunol.158, 2350–2355 (1997). CASPubMed Google Scholar
Zhang, J., Berenstein, E. H., Evans, R. L. & Siraganian, R. P. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J. Exp. Med.184, 71–79 (1996). ArticleCASPubMed Google Scholar
Costello, P. S. et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene13, 2595–2605 (1996). CASPubMed Google Scholar
Lin, S., Cicala, C., Scharenberg, A. M. & Kinet, J. P. The FcεRIβ subunit functions as an amplifier of FcεRIγ-mediated cell activation signals. Cell85, 985–995 (1996). ArticleCASPubMed Google Scholar
Furumoto, Y., Nunomura, S., Terada, T., Rivera, J. & Ra, C. The FcεRIβ immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IκB kinase phosphorylation and mast cell cytokine production. J. Biol. Chem.279, 49177–49187 (2004). ArticleCASPubMed Google Scholar
On, M., Billingsley, J. M., Jouvin, M. H. & Kinet, J. P. Molecular dissection of the FcRβ signaling amplifier. J. Biol. Chem.279, 45782–45790 (2004). ArticleCASPubMed Google Scholar
Xiao, W. et al. Positive and negative regulation of mast cell activation by Lyn via the FcεRI. J. Immunol.175, 6885–6892 (2005). ArticleCASPubMed Google Scholar
Parekh, A. B. & Penner, R. Store depletion and calcium influx. Physiol. Rev.77, 901–930 (1997). ArticleCASPubMed Google Scholar
Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature441, 179–185 (2006). ArticleCASPubMed Google Scholar
Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature443, 226–229 (2006). ArticleCASPubMedPubMed Central Google Scholar
Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature443, 230–233 (2006). ArticleCASPubMed Google Scholar
Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell Biol.8, 771–773 (2006). ArticleCASPubMed Google Scholar
Ammit, A. J. et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J.15, 1212–1214 (2001). ArticleCASPubMed Google Scholar
Prieschl, E. E., Csonga, R., Novotny, V., Kikuchi, G. E. & Baumruker, T. The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fcε receptor I triggering. J. Exp. Med.190, 1–8 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jolly, P. S. et al. Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med.199, 959–970 (2004). ArticleCASPubMedPubMed Central Google Scholar
Choi, O. H., Kim, J. H. & Kinet, J. P. Calcium mobilization via sphingosine kinase in signalling by the FcεRI antigen receptor. Nature380, 634–636 (1996). ArticleCASPubMed Google Scholar
Hait, N. C., Oskeritzian, C. A., Paugh, S. W., Milstien, S. & Spiegel, S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta1758, 2016–2026 (2006). ArticleCASPubMed Google Scholar
Lee, H. S. et al. Antigen-induced Ca2+ mobilization in RBL-2H3 cells: role of I(1,4,5)P3 and S1P and necessity of I(1,4,5)P3 production. Cell Calcium38, 581–592 (2005). ArticleCASPubMed Google Scholar
Melendez, A. J. & Khaw, A. K. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem.277, 17255–17262 (2002). ArticleCASPubMed Google Scholar
Olivera A, M. K. et al. The sphingosine kinase-sphingosine-1-phosphate-axis is a determinant of mast cell function and anaphylaxis. Immunity 8 March 2007 (doi:10.1016/j.immuni.2007.02.008). This is a well carried out and extensive study clarifying the role of SPHK1and SPHK2 in FcεRI signalling. ArticleCASPubMed Google Scholar
Mathes, C., Fleig, A. & Penner, R. Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem.273, 25020–25030 (1998). ArticleCASPubMed Google Scholar
Urtz, N. et al. Early activation of sphingosine kinase in mast cells and recruitment to FcεRI are mediated by its interaction with Lyn kinase. Mol. Cell. Biol.24, 8765–8777 (2004). ArticleCASPubMedPubMed Central Google Scholar
Olivera, A. et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J. Biol. Chem.281, 2515–2525 (2006). ArticleCASPubMed Google Scholar
Tam, S. Y. et al. RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nature Immunol.5, 844–852 (2004). This study identified a new negative regulator of FcεRI signalling. ArticleCAS Google Scholar
Liu, Y., Zhu, M., Nishida, K., Hirano, T. & Zhang, W. An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. J. Exp. Med.204, 93–103 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tkaczyk, C. et al. NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and FcεRI aggregation. Blood104, 207–214 (2004). ArticleCASPubMed Google Scholar
Brdicka, T. et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med.196, 1617–1626 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med.200, 991–1000 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhu, M., Rhee, I., Liu, Y. & Zhang, W. Negative regulation of FcεRI-mediated signaling and mast cell function by the adaptor protein LAX. J. Biol. Chem.281, 18408–18413 (2006). ArticleCASPubMed Google Scholar
Klemm, S. et al. The Bcl10–Malt1 complex segregates FcεRI-mediated nuclear factorκB activation and cytokine production from mast cell degranulation. J. Exp. Med.203, 337–347 (2006). ArticlePubMedPubMed Central Google Scholar
Ruland, J., Duncan, G. S., Wakeham, A. & Mak, T. W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity19, 749–758 (2003). ArticleCASPubMed Google Scholar
Bruhns, P., Fremont, S. & Daeron, M. Regulation of allergy by Fc receptors. Curr. Opin. Immunol.17, 662–669 (2005). ArticleCASPubMed Google Scholar
Watanabe, T. et al. Roles of FcγRIIB in nasal eosinophilia and IgE production in murine allergic rhinitis. Am. J. Respir. Crit. Care Med.169, 105–112 (2004). ArticlePubMed Google Scholar
Bolland, S., Pearse, R. N., Kurosaki, T. & Ravetch, J. V. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity8, 509–516 (1998). ArticleCASPubMed Google Scholar
Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature383, 263–266 (1996). ArticleCASPubMed Google Scholar
Isnardi, I. et al. Two distinct tyrosine-based motifs enable the inhibitory receptor FcγRIIB to cooperatively recruit the inositol phosphatases SHIP1/2 and the adapters Grb2/Grap. J. Biol. Chem.279, 51931–51938 (2004). ArticleCASPubMed Google Scholar
Kepley, C. L. et al. Co-aggregation of FcγRII with FcεRI on human mast cells inhibits antigen-induced secretion and involves SHIP–Grb2–Dok complexes. J. Biol. Chem.279, 35139–35149 (2004). ArticleCASPubMed Google Scholar
Cherwinski, H. M. et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J. Immunol.174, 1348–1356 (2005). ArticleCASPubMed Google Scholar
Pasquier, B. et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity22, 31–42 (2005). This is an interesting study that describes a negative effect of FcαRI signalling on FcεRI signalling. CASPubMed Google Scholar
Kitani, S., Berenstein, E., Mergenhagen, S., Tempst, P. & Siraganian, R. P. A cell surface glycoprotein of rat basophilic leukemia cells close to the high affinity IgE receptor (FcεRI). Similarity to human melanoma differentiation antigen ME491. J. Biol. Chem.266, 1903–1909 (1991). CASPubMed Google Scholar
Nishikata, H., Oliver, C., Mergenhagen, S. E. & Siraganian, R. P. The rat mast cell antigen AD1 (homologue to human CD63 or melanoma antigen ME491) is expressed in other cells in culture. J. Immunol.149, 862–870 (1992). CASPubMed Google Scholar
Kraft, S. et al. Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J. Exp. Med.201, 385–396 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hamawy, M. M., Swieter, M., Mergenhagen, S. E. & Siraganian, R. P. Reconstitution of high affinity IgE receptor-mediated secretion by transfecting protein tyrosine kinase pp125FAK. J. Biol. Chem.272, 30498–30503 (1997). ArticleCASPubMed Google Scholar
Soler, M. et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J.18, 254–261 (2001). ArticleCASPubMed Google Scholar
Holgate, S. T., Djukanovic, R., Casale, T. & Bousquet, J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin. Exp. Allergy35, 408–416 (2005). ArticleCASPubMed Google Scholar
Busse, W. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol.108, 184–190 (2001). ArticleCASPubMed Google Scholar
Casale, T. B. et al. Effect of omalizumab on symptoms of seasonal allergic rhinitis: a randomized controlled trial. JAMA286, 2956–2967 (2001). ArticleCASPubMed Google Scholar
Leung, D. Y. et al. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med.348, 986–993 (2003). ArticleCASPubMed Google Scholar
Djukanovic, R. et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med.170, 583–593 (2004). ArticlePubMed Google Scholar
Prussin, C. et al. Omalizumab treatment downregulates dendritic cell FcεRI expression. J. Allergy Clin. Immunol.112, 1147–1154 (2003). ArticleCASPubMed Google Scholar
Belostotsky, R. & Lorberboum-Galski, H. Apoptosis-inducing human-origin Fcε–Bak chimeric proteins for targeted elimination of mast cells and basophils: a new approach for allergy treatment. J. Immunol.167, 4719–4728 (2001). ArticleCASPubMed Google Scholar
Strait, R. T., Morris, S. C. & Finkelman, F. D. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. J. Clin. Invest.116, 833–841 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tam, S. W., Demissie, S., Thomas, D. & Daeron, M. A bispecific antibody against human IgE and human FcγRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy59, 772–780 (2004). ArticleCASPubMed Google Scholar
Zhu, D., Kepley, C. L., Zhang, M., Zhang, K. & Saxon, A. A novel human immunoglobulin Fcγ–Fcε bifunctional fusion protein inhibits FcεRI-mediated degranulation. Nature Med.8, 518–521 (2002). ArticleCASPubMed Google Scholar
Zhu, D. et al. A chimeric human–cat fusion protein blocks cat-induced allergy. Nature Med.11, 446–449 (2005). This study uses FcγRIIB-mediated inhibition of FcεRI signalling to develop a novel targeted strategy for the treatment of allergy. ArticleCASPubMed Google Scholar
Kono, H. et al. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet.14, 2881–2892 (2005). ArticleCASPubMed Google Scholar
Windmiller, D. A. & Backer, J. M. Distinct phosphoinositide 3-kinases mediate mast cell degranulation in response to G-protein-coupled versus FcεRI receptors. J. Biol. Chem.278, 11874–11878 (2003). ArticleCASPubMed Google Scholar
Laffargue, M. et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity16, 441–451 (2002). ArticleCASPubMed Google Scholar
Ali, K. et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature431, 1007–1011 (2004). This is a study that provides convincing evidence for the essential role of p110δ PI3K in mast cells and allergy. ArticleCASPubMed Google Scholar
Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA96, 4240–4245 (1999). ArticleCASPubMedPubMed Central Google Scholar
Castells, M. C. et al. gp49B1–αvβ3 interaction inhibits antigen-induced mast cell activation. Nature Immunol.2, 436–442 (2001). ArticleCAS Google Scholar
Daheshia, M., Friend, D. S., Grusby, M. J., Austen, K. F. & Katz, H. R. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J. Exp. Med.194, 227–234 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lu-Kuo, J. M., Fruman, D. A., Joyal, D. M., Cantley, L. C. & Katz, H. R. Impaired kit- but not FcεRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85α gene products. J. Biol. Chem.275, 6022–6029 (2000). ArticleCASPubMed Google Scholar
Abramson, J., Licht, A. & Pecht, I. Selective inhibition of the FcεRI-induced de novo synthesis of mediators by an inhibitory receptor. EMBO J.25, 323–334 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guthmann, M. D., Tal, M. & Pecht, I. A secretion inhibitory signal transduction molecule on mast cells is another C-type lectin. Proc. Natl Acad. Sci. USA92, 9397–9401 (1995). ArticleCASPubMedPubMed Central Google Scholar
Licht, A., Pecht, I. & Schweitzer-Stenner, R. Regulation of mast cells' secretory response by co-clustering the Type 1 Fcε receptor with the mast cell function-associated antigen. Eur. J. Immunol.35, 1621–1633 (2005). ArticleCASPubMed Google Scholar
Ortega, E., Schneider, H. & Pecht, I. Possible interactions between the Fcε receptor and a novel mast cell function-associated antigen. Int. Immunol.3, 333–342 (1991). ArticleCASPubMed Google Scholar
Xu, R., Abramson, J., Fridkin, M. & Pecht, I. SH2 domain-containing inositol polyphosphate 5′-phosphatase is the main mediator of the inhibitory action of the mast cell function-associated antigen. J. Immunol.167, 6394–6402 (2001). ArticleCASPubMed Google Scholar
Colonna, M. et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J. Exp. Med.186, 1809–1818 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lienard, H., Bruhns, P., Malbec, O., Fridman, W. H. & Daeron, M. Signal regulatory proteins negatively regulate immunoreceptor-dependent cell activation. J. Biol. Chem.274, 32493–32499 (1999). ArticleCASPubMed Google Scholar
Bachelet, I., Munitz, A., Moretta, A., Moretta, L. & Levi-Schaffer, F. The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J. Immunol.175, 7989–7995 (2005). ArticleCASPubMed Google Scholar
Yotsumoto, K. et al. Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J. Exp. Med.198, 223–233 (2003). ArticleCASPubMedPubMed Central Google Scholar
Alvarez-Errico, D. et al. IREM-1 is a novel inhibitory receptor expressed by myeloid cells. Eur. J. Immunol.34, 3690–3701 (2004). ArticleCASPubMed Google Scholar
Alvarez-Errico, D., Sayos, J. & Lopez-Botet, M. The IREM-1 (CD300f) inhibitory receptor associates with the p85α subunit of phosphoinositide 3-kinase. J. Immunol.178, 808–816 (2007). ArticleCASPubMed Google Scholar