Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins (original) (raw)
Brown, D. A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol.164, 103–114 (1998). ArticleCAS Google Scholar
Silvius, J. R. Role of cholesterol in lipid rafts formation: lessons from lipid model system. Biochim. Biophys. Acta1610, 174–183 (2003). ArticleCAS Google Scholar
Rodriguez-Boulan, E. & Nelson, W. J. Morphogenesis of the polarized epithelial cell phenotype. Science245, 718–725 (1989). ArticleCAS Google Scholar
Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry27, 6197–6202 (1988). ArticleCAS Google Scholar
Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell68, 533–544 (1992). ArticleCAS Google Scholar
Cinek, T. & Horejsi, V. The nature of large noncovalent complexes containing glycosyl- phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J. Immunol.149, 2262–2270 (1992). CASPubMed Google Scholar
Casey, P. J. Protein lipidation in cell signaling. Science268, 221–225 (1995). ArticleCAS Google Scholar
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature387, 569–572 (1997). ArticleCAS Google Scholar
Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J.83, 1–7 (2002). Article Google Scholar
Heerklotz, H., Szadkowska, H., Anderson, T. & Seelig, J. The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton. J. Mol. Biol.329, 793–799 (2003). ArticleCAS Google Scholar
Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct.32, 257–283 (2003). ArticleCAS Google Scholar
Pizzo, P. et al. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol.32, 3082–3091 (2002). ArticleCAS Google Scholar
Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for endocytosis. EMBO J.20, 2202–2213 (2001). ArticleCAS Google Scholar
Kwik, S. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. USA100, 13964–13969 (2003). ArticleCAS Google Scholar
Jacobson, K., Mouritsen, O. G. & Anderson, R. G. W. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol.9, 7–14 (2007). ArticleCAS Google Scholar
Subczynski, W. K. & Kusumi, A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta1610, 231–243 (2003). ArticleCAS Google Scholar
Liang, Y. et al. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem.278, 21655–21662 (2003). ArticleCAS Google Scholar
Quinn, P., Griffiths, G. & Warren, G. Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J. Cell Biol.98, 2142–2147 (1984). ArticleCAS Google Scholar
Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006). ArticleCAS Google Scholar
Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science296, 1821–1825 (2002). ArticleCAS Google Scholar
Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct.34, 351–378 (2005). ArticleCAS Google Scholar
Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res.47, 1597–1598 (2006). ArticleCAS Google Scholar
Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell116, 577–589 (2004). In this paper, the authors used fluorescence lifetime imaging microscopy to demonstrate the existence of cholesterol-sensitive domains of GPI-anchored proteins in living cells. ArticleCAS Google Scholar
Suzuki, K. G. N. et al. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol.177, 717–730 (2007). ArticleCAS Google Scholar
Suzuki, K. G., Fujiwara, T. K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol.177, 731–742 (2007). In this paper, the authors used single-particle tracking to demonstrate that both protein–protein and lipid–lipid (raft) interactions are necessary during signalling through CD59 (a GPI-anchored protein). ArticleCAS Google Scholar
Lauffenburger, D. & Horwitz, A. Cell migration: a physically integrated molecular process. Cell84, 359–369 (1996). ArticleCAS Google Scholar
Sanchez-Madrid, F. & del Pozo, M. Leukocyte polarization in cell migration and immune interactions. EMBO J.18, 501–511 (1999). ArticleCAS Google Scholar
Millán, J., Montoya, M., Sancho, D., Sánchez-Madrid, F. & Alonso, M. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood99, 978–984 (2002). Article Google Scholar
Seveau, S., Eddy, R., Maxfield, F. & Pierini, L. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol. Biol. Cell12, 3550–3562 (2001). ArticleCAS Google Scholar
Kindzelskii, A., Sitrin, R. & Petty, H. Cutting edge: optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: apparent role calcium signaling. J. Immunol.172, 4681–4685 (2004). ArticleCAS Google Scholar
Gómez-Moutón, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA98, 9642–9647 (2001). Article Google Scholar
Gri, G., Molon, B., Mañes, S., Pozzan, T. & Viola, A. The inner side of T cell lipid rafts. Immunol. Lett.94, 247–252 (2004). ArticleCAS Google Scholar
Ge, S. & Pachter, J. Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein-1 by human astrocytes. J. Biol. Chem.279, 6688–6695 (2004). ArticleCAS Google Scholar
Jiao, X., Zhang, N., Xu, X., Oppenheim, J. & Jin, T. Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol. Cell. Biol.25, 5752–5762 (2005). ArticleCAS Google Scholar
Mañes, S., Lacalle, R., Gómez- Moutón, C. & Martínez-A, C. From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol.24, 320–326 (2003). Article Google Scholar
Fabbri, M. et al. Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the aL/b2 integrin, LFA-1, during leukocyte chemotaxis. Mol. Biol. Cell16, 5793–5803 (2005). ArticleCAS Google Scholar
del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science303, 839–842 (2004). ArticleCAS Google Scholar
Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol.174, 725–734 (2006). ArticleCAS Google Scholar
Moffett, S., Brown, D. & Linder, M. Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem.275, 2191–2198 (2000). ArticleCAS Google Scholar
Oh, P. & Schnitzer, J. E. Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell12, 685–698 (2001). ArticleCAS Google Scholar
Dykstra, M., Cherukuri, A., Sohn, H. W., Tzeng, S. -J. & Pierce, S. K. Location is everything: Lipid rafts and immune cell signaling. Annu. Rev. Immunol.21, 457–481 (2003). ArticleCAS Google Scholar
Davis, D. M. & Dustin, M. L. What is the importance of the immunological synapse? Trends Immunol.25, 323–327 (2004). ArticleCAS Google Scholar
Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science283, 680–682 (1999). ArticleCAS Google Scholar
Gupta, N. et al. Quantitative proteomics analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nature Immunol.7, 625–633 (2006). This paper shows that BCR engagement induces the dissociation of ezrin from rafts, and proposes that, by acting as a linker to the actin cytoskeleton, ezrin regulates raft dynamics in B cells. ArticleCAS Google Scholar
Von Haller, P. D., Donohoe, S., Goodlett, D. R. Aebersold, R. & Watts, J. D. Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics1, 1010–1021 (2001). ArticleCAS Google Scholar
Billadeau, D. D. & Burkhardt, J. K. Regulation of cytoskeletal dynamics at the immune synapse: new stars join the troupe. Traffic7, 1451–1460 (2006). ArticleCAS Google Scholar
Saint-Ruf, C. et al. Different initiation of pre-TCR and gdTCR signaling. Nature406, 524–527 (2000). ArticleCAS Google Scholar
Leitenberg, D., Balamuth, F. & Bottomly, K. Changes in the T cell receptor macromolecular signaling complex and membrane microdomains during T cell development and activation. Semin. Immunol.13, 129–138 (2001). ArticleCAS Google Scholar
Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity13, 243–253 (2000). ArticleCAS Google Scholar
Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol.165, 6020–6023 (2000). ArticleCAS Google Scholar
Chung, J. B., Baumeister, M. A. & Monroe, J. G. Differential sequestration of plasma membrane-associated B cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. J. Immunol.166, 736–740 (2001). ArticleCAS Google Scholar
Sohn, H. W., Tolar, P., Jin, T. & Pierce, S. K. Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc. Natl Acad. Sci. USA103, 8143–8148 (2006). In this article, the authors used FRET to provide evidence for a selective and transient association of the BCR with a raft-targeted reporter within seconds of antigen binding. ArticleCAS Google Scholar
Tavano, R. et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nature Cell Biol.8, 1270–1276 (2006). This paper demonstrates the CD28-mediated selective recruitment of a raft-targeted reporter into the T-cell immunological synapse, and provides a mechanism based on the interaction of CD28 with the actin-binding protein FLNA. ArticleCAS Google Scholar
Cherukuri, A., Cheng, P. C., Sohn, H. W. & Pierce, S. K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity14, 169–179 (2001). ArticleCAS Google Scholar
Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell121, 937–950 (2005). ArticleCAS Google Scholar
Glebov, O. O. & Nichols, B. J. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nature Cell Biol.6, 238–243 (2004). ArticleCAS Google Scholar
Tavano, R. et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J. Immunol.173, 5392–5397 (2004). ArticleCAS Google Scholar
Viola, A. Amplification of TCR signaling by membrane dynamic microdomains. Trends Immunol.22, 322–327 (2001). ArticleCAS Google Scholar
Manes, S. & Viola, A. Lipid rafts in lymphocyte activation and migration. Mol. Membr. Biol.23, 59–69 (2006). ArticleCAS Google Scholar
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). ArticleCAS Google Scholar
Mossman, K. D., Campi, G., Groves, J. T. & Dustin M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science310, 1191–1193 (2005). ArticleCAS Google Scholar
Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunol.6, 1253–1262 (2005). ArticleCAS Google Scholar
Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med.202, 1031–1036 (2005). ArticleCAS Google Scholar
Cullinan, P., Sperling, A. I. & Burkhardt, J. K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev.189, 111–122 (2002). ArticleCAS Google Scholar
Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol.2, 138–145 (2001). ArticleCAS Google Scholar
Flanagan, L. A. et al. Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J. Cell Biol.155, 511–517 (2001). ArticleCAS Google Scholar
Hayashi, K. & Altman, A. Filamin A is required for T cell activation mediated by protein kinase C-θ. J. Immunol.177, 1721–1728 (2006). ArticleCAS Google Scholar
Gupta, N. & DeFranco, A. L. Visualization of lipid raft dynamics and early signaling events during antigen receptor-mediated B cell activation. Mol. Biol. Cell14, 432–444 (2003). ArticleCAS Google Scholar
Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell–APC conjugation. Nature Immunol.5, 272–279 (2004). ArticleCAS Google Scholar
Hao, S. & August, A. Actin depolymerization transduces the strength of B cell receptor stimulation. Mol. Biol. Cell16, 2275–2284 (2005). ArticleCAS Google Scholar
Haggie, P. M., Kim, J. K., Lukacs, G. L. & Verkman, A. S. Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Mol. Biol. Cell17, 4937–4945 (2006). ArticleCAS Google Scholar
Saad, J. S. et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA103, 11364–11369 (2006). ArticleCAS Google Scholar
Golub, T. & Pico, C. Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem. Soc. Symp.72, 119–127 (2005). ArticleCAS Google Scholar
Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA104, 3165–3170 (2007). ArticleCAS Google Scholar