Micromanagement of the immune system by microRNAs (original) (raw)
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). A comprehensive review that describes the genomics, biogenesis and mechanism of action of miRNAs. ArticleCASPubMed Google Scholar
Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet.5, 396–400 (2004). ArticleCASPubMed Google Scholar
Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol.23, 175–205 (2007). ArticleCASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). Reference 4 is a hallmark paper that describes the identification of thelin-4miRNA gene, the first example of an miRNA gene, and shows that it has a crucial role in regulating the timing of lineage differentiation inC. elegans. ArticleCASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). Reference 5 is a hallmark paper showing that the heterochronic genelin-14is regulated bylin-4miRNA at the post-transcriptional level inC. elegans. ArticleCASPubMed Google Scholar
Reinhart, B. J. et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCASPubMed Google Scholar
Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell5, 659–669 (2000). ArticleCASPubMed Google Scholar
Pasquinelli, A. E. et al. Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA. Nature408, 86–89 (2000). ArticleCASPubMed Google Scholar
Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature426, 845–849 (2003). ArticleCASPubMed Google Scholar
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113, 25–36 (2003). ArticleCASPubMed Google Scholar
Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol.13, 790–795 (2003). ArticleCASPubMed Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). ArticleCASPubMed Google Scholar
Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science294, 862–864 (2001). ArticleCASPubMed Google Scholar
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science294, 853–858 (2001). ArticleCASPubMed Google Scholar
Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol.12, 735–739 (2002). ArticleCASPubMed Google Scholar
Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science299, 1540 (2003). ArticleCASPubMed Google Scholar
Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genet.37, 766–770 (2005). ArticleCASPubMed Google Scholar
Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell126, 1203–1217 (2006). ArticleCASPubMed Google Scholar
Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell120, 21–24 (2005). ArticleCASPubMed Google Scholar
Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell127, 1193–1207 (2006). ArticleCASPubMed Google Scholar
Chen, X. M., Splinter, P. L., O'Hara S, P. & Larusso, N. F. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem.282, 28929–28938 (2007). ArticleCASPubMed Google Scholar
Megraw, M., Sethupathy, P., Corda, B. & Hatzigeorgiou, A. G. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res.35, D149–D155 (2007). ArticleCASPubMed Google Scholar
Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol.6, 376–385 (2005). ArticleCAS Google Scholar
Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). ArticleCASPubMedPubMed Central Google Scholar
Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol.13, 1097–1101 (2006). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCASPubMed Google Scholar
Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the microprocessor complex. Nature432, 231–235 (2004). ArticleCASPubMed Google Scholar
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol.14, 2162–2167 (2004). ArticleCASPubMed Google Scholar
Han, M. H., Goud, S., Song, L. & Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl Acad. Sci. USA101, 1093–1098 (2004). ArticleCASPubMedPubMed Central Google Scholar
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell130, 89–100 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hammond, S. C., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000). ArticleCASPubMed Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 295–296 (2001). ArticleCAS Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). ArticleCASPubMed Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). ArticleCASPubMed Google Scholar
Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science303, 83–86 (2004). This paper describes the identification of miRNAs that are differentially expressed during haematopoietic-lineage differentiation and shows that miR-181a can modulate B- and T-cell differentiation, providing the first example of miRNA function in vertebrate cells. ArticleCASPubMed Google Scholar
Zeng, Y. & Cullen, B. R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res.32, 4776–4785 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zeng, Y. & Cullen, B. R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem.280, 27595–27603 (2005). ArticleCASPubMed Google Scholar
Zeng, Y., Yi, R. & Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J.24, 138–148 (2005). ArticleCASPubMed Google Scholar
Zeng, Y., Cai, X. & Cullen, B. R. Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol.392, 371–380 (2005). ArticleCASPubMed Google Scholar
Wulczyn, F. G. et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J.21, 415–426 (2007). ArticleCASPubMed Google Scholar
Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.20, 2202–2207 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nilsen, T. W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet.23, 243–249 (2007). ArticleCASPubMed Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). ArticleCASPubMed Google Scholar
Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell. Biol.17, 118–126 (2007). ArticleCASPubMed Google Scholar
Jackson, R. J. & Standart, N. How do microRNAs regulate gene expression? Sci. STKE367, re1 (2007). Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCASPubMed Google Scholar
Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243, 215–225 (2002). ArticleCASPubMed Google Scholar
Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol.13, 1102–1107 (2006). ArticleCAS Google Scholar
Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol.13, 1108–1114 (2006). ArticleCAS Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science309, 1573–1576 (2005). ArticleCASPubMed Google Scholar
Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev.21, 1857–1862 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science317, 1764–1767 (2007). ArticleCASPubMed Google Scholar
Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature447, 875–878 (2007). ArticleCASPubMed Google Scholar
Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell129, 1141–1151 (2007). ArticleCASPubMed Google Scholar
Lai, E. C. MicroRNAs are complementary to 3′UTR motifs that mediate negative post-transcriptional regulation. Nature Genet.30, 363–364 (2002). ArticleCASPubMed Google Scholar
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). This is one of the first reports on computational prediction of miRNA target genes. It shows that seed nucleotides, which are the 5′ 2–8 nucleotides of a mature miRNA, are crucial for computational target gene prediction. ArticleCASPubMed Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol.1, E60 (2003). ArticlePubMedPubMed Central Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). ArticleCASPubMed Google Scholar
Rajewsky, N. microRNA target predictions in animals. Nature Genet.38, S8–S13 (2006). This is a comprehensive review that describes the computational methods for miRNA target gene prediction. ArticleCASPubMed Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). ArticleCASPubMed Google Scholar
Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell123, 1133–1146 (2005). ArticleCASPubMed Google Scholar
Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA104, 9667–9672 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chang, S., Johnston, R. J. Jr, Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature430, 785–789 (2004). ArticleCASPubMed Google Scholar
Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nature Struct. Mol. Biol.13, 849–851 (2006). ArticleCAS Google Scholar
Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev.18, 132–137 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vella, M. C., Reinert, K. & Slack, F. J. Architecture of a validated microRNA::target interaction. Chem. Biol.11, 1619–1623 (2004). ArticleCASPubMed Google Scholar
Long, D. et al. Potent effect of target structure on microRNA function. Nature Struct. Mol. Biol.14, 287–294 (2007). ArticleCAS Google Scholar
Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell129, 303–317 (2007). ArticleCASPubMed Google Scholar
Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science316, 608–611 (2007). This report shows that mice deficient in miR-155 are immunodeficient, and have defects in the function of B and T cells, as well as dendritic cells. ArticleCASPubMedPubMed Central Google Scholar
Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science316, 604–608 (2007). Using gain-of-function and lost-of-function analyses in mice, this study demonstrates an important role for miRNA-155 in the differentiation of T helper cells and the establishment of germinal centres. ArticleCASPubMed Google Scholar
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316, 575–579 (2007). ArticleCASPubMed Google Scholar
Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA101, 11755–11760 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). ArticleCASPubMed Google Scholar
Garzon, R., Fabbri, M., Cimmino, A., Calin, G. A. & Croce, C. M. MicroRNA expression and function in cancer. Trends Mol. Med.12, 580–587 (2006). ArticleCASPubMed Google Scholar
Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer6, 259–269 (2006). ArticleCAS Google Scholar
Ramkissoon, S. H. et al. Hematopoietic-specific microRNA expression in human cells. Leuk. Res.30, 643–647 (2006). ArticleCASPubMed Google Scholar
Choong, M. L., Yang, H. H. & McNiece, I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol.35, 551–564 (2007). ArticleCASPubMed Google Scholar
Neilson, J. R., Zheng, G. X., Burge, C. B. & Sharp, P. A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev.21, 578–589 (2007). This report describes the systematic cloning of miRNAs from purified T-cell populations, and should be a useful resource for studying miRNAs that may have roles during T-cell development. ArticleCASPubMedPubMed Central Google Scholar
Wu, H., Neilson, J. R., Kumar, P., Manocha, M., Shankar, P., Sharp, P. A. & Manjunath, N. miRNA profiling of naive, effector, and memory CD8 T cells. PLoS ONE2, e1020 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature445, 936–940 (2007). ArticleCASPubMed Google Scholar
Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell129, 147–161 (2007). This study shows that miR-181a can function as an antigen sensitivity rheostat to modulate T-cell sensitivity to antigens during T-cell development and maturation by downregulating the expression of multiple phosphatases in the TCR signalling pathway. ArticleCASPubMed Google Scholar
Zhou, B., Wang, S., Mayr, C., Bartel, D. P. & Lodish, H. F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl Acad. Sci. USA104, 7080–7085 (2007). ArticleCASPubMedPubMed Central Google Scholar
Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science247, 824–830. (1990). ArticleCASPubMed Google Scholar
Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell123, 819–831 (2005). ArticleCASPubMed Google Scholar
Fukao, T. et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell129, 617–631 (2007). ArticleCASPubMed Google Scholar
Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell131, 146–159 (2007). Using both gain- and loss-of-function analyses in mice, this study demonstrates the important role of miR-150 in B-cell development through targeting Myb. ArticleCASPubMed Google Scholar
Tam, W., Ben-Yehuda, D. & Hayward, W. S. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol. Cell. Biol.17, 1490–1502 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol.207, 243–249 (2005). ArticleCASPubMed Google Scholar
Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer39, 167–169 (2004). ArticleCASPubMed Google Scholar
Tam, W. & Dahlberg, J. E. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer45, 211–212 (2006). ArticleCASPubMed Google Scholar
Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA103, 7024–7029 (2006). ArticleCASPubMedPubMed Central Google Scholar
Davey, G. M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med.188, 1867–1874 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pircher, H., Rohrer, U. H., Moskophidis, D., Zinkernagel, R. M. & Hengartner, H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature351, 482–485 (1991). ArticleCASPubMed Google Scholar
Hogquist, K. A., Jameson, S. C. & Bevan, M. J. The ligand for positive selection of T lymphocytes in the thymus. Curr. Opin. Immunol.6, 273–278 (1994). ArticleCASPubMed Google Scholar
Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA103, 12481–12486 (2006). ArticleCASPubMedPubMed Central Google Scholar
O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA104, 1604–1609 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science308, 557–560 (2005). This paper demonstrates that the cellular miRNA miR-32 can effectively limit replication of PFV1, and a suppressor protein encoded by the virus can counteract the repressive effect of miR-32 in a plant system. ArticleCASPubMed Google Scholar
Pedersen, I. M. et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature449, 919–921 (2007). This report shows that the IFN signalling system, the key defence mechanism against viral infection in mammalian cells, works in concert with miRNAs to control viral infection. ArticleCASPubMedPubMed Central Google Scholar
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science309, 1577–1581 (2005). This paper shows that the host miRNA miR-122 could be used by HCV to potentiate HCV replication. ArticleCASPubMed Google Scholar
Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science296, 1319–1321 (2002). This study shows that flock house virus (FHV) encodes an RNAi suppressor protein, B2, which is required for the FHV infection ofD. melanogasterhost cells, indicating the importance of RNA interference pathway in antiviral defence in flies. ArticleCASPubMed Google Scholar
Sarnow, P., Jopling, C. L., Norman, K. L., Schutz, S. & Wehner, K. A. MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nature Rev. Microbiol.4, 651–659 (2006). ArticleCAS Google Scholar
Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science304, 734–736 (2004). This is the first study to show that DNA viruses encode miRNAs. ArticleCASPubMed Google Scholar
Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods2, 269–276 (2005). ArticleCASPubMed Google Scholar
Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature435, 682–686 (2005). This report demonstrates that virus-encoded miRNAs could regulate SV40-encoded mRNAs and facilitate viral infection. ArticleCASPubMed Google Scholar
Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA102, 5570–5575 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gupta, A., Gartner, J. J., Sethupathy, P., Hatzigeorgiou, A. G. & Fraser, N. W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature442, 82–85 (2006). ArticleCASPubMed Google Scholar
Triboulet, R. et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science315, 1579–1582 (2007). ArticleCASPubMed Google Scholar
Metcalf, D. & Nicola, NA. The hematopoietic colony-stimulating factors. From biology to clinical applications. (Cambridge Univ. Press, 1995). Book Google Scholar
Shivdasani, R. A. & Orkin, S. H. The transcriptional control of hematopoiesis. Blood87, 4025–4039 (1996). CASPubMed Google Scholar
Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature445, 936–940 (2007). ArticleCASPubMed Google Scholar
Gregory, R. I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). ArticleCASPubMed Google Scholar
Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005). ArticleCASPubMed Google Scholar
Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep.6, 961–967 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005). ArticleCASPubMedPubMed Central Google Scholar