Redefinition of lymphoid progenitors (original) (raw)
References
Gatti, R. A., Meuwissen, H. J. & Good, R. A. Mixed-leucocyte-culture response to leucocytes in severe combined immunodeficiency disease. Lancet1, 235–236 (1971). ArticleCASPubMed Google Scholar
Lawton, A. R., Bockman, D. E. & Cooper, M. D. Treatment of autosomal recessive lymphopenic agammaglobulinemia by transplantation of matched allogeneic bone marrow. Am. J. Med.54, 98–110 (1973). ArticleCASPubMed Google Scholar
Bosma, G. C., Custer, R. P. & Bosma, M. J. A severe combined immunodeficiency mutation in the mouse. Nature301, 527–530 (1983). ArticleCASPubMed Google Scholar
Kawamoto, H., Ohmura, K. & Katsura, Y. Direct evidence for the commitment of hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver. Int. Immunol.9, 1011–1019 (1997). ArticleCASPubMed Google Scholar
Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell91, 661–672 (1997). ArticleCASPubMed Google Scholar
LeDouarin, N. M. & Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med.142, 17–40 (1975). ArticleCAS Google Scholar
Abramson, S., Miller, R. G. & Phillip, R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med.145, 1567–1569 (1977). ArticleCASPubMedPubMed Central Google Scholar
Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of w/wv mice. Cell42, 71–79 (1985). ArticleCASPubMed Google Scholar
Keller, G., Paige, C., Gilboa, E. & Wagner, E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature318, 149–154 (1985). ArticleCASPubMed Google Scholar
Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell45, 917–927 (1986). ArticleCASPubMed Google Scholar
Wu, L., Antica, M., Johnson, G. R., Scollay, R. & Shortman, K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med.174, 1617–1627 (1991). ArticleCASPubMed Google Scholar
Matsuzaki, Y. et al. Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med.178, 1283–1292 (1993). ArticleCASPubMed Google Scholar
Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell79, 143–156 (1994). ArticleCASPubMed Google Scholar
Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hematopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med.190, 1201–1213 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity5, 537–549 (1996). ArticleCASPubMed Google Scholar
Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity3, 459–473 (1995). ArticleCASPubMed Google Scholar
Hao, Q.-L., et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood97, 3683–3690 (2001). ArticleCASPubMed Google Scholar
Cumano, A., Paige, C. J., Iscove, N. N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature356, 612–615 (1992). ArticleCASPubMed Google Scholar
Delassus, S. & Cumano, A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity4, 97–106 (1996). ArticleCASPubMed Google Scholar
Katsura, Y. & Kawamoto, H. Stepwise lineage restriction of progenitors in lympho-myelopoiesis. Int. Rev. Immunol.20, 1–20 (2001). ArticleCASPubMed Google Scholar
Kawamoto, H., Ohmura, K., Fujimoto, S. & Katsura, Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J. Immunol.162, 2725–2731 (1999). CASPubMed Google Scholar
Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity12, 441–450 (2000). ArticleCASPubMed Google Scholar
Egawa, T. et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity15, 323–334 (2001). ArticleCASPubMed Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). ArticleCASPubMed Google Scholar
Traver, D. et al. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood98, 627–635 (2001). ArticleCASPubMed Google Scholar
Boyd, A. W. & Schrader, J. W. Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine. Nature297, 691–693 (1982). ArticleCASPubMed Google Scholar
Klinken, S. P., Alexander, W. S. & Adams, J. M. Hemopoietic lineage switch: v-raf oncogene converts Eμ-myc transgenic B cells into macrophages. Cell53, 857–867 (1988). ArticleCASPubMed Google Scholar
Borrello, M. A. & Phipps, R. P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today17, 471–475 (1996). ArticleCASPubMed Google Scholar
Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol.2, 83–88 (2001). ArticleCAS Google Scholar
Matutes, E. et al. Definition of acute biphenotypic leukemia. Haematologica82, 64–66 (1997). CASPubMed Google Scholar
Schmit, C. A. & Przybylski, G. K. What can we learn from leukemia as for the process of lineage commitment in hematopoiesis? Int. Rev. Immunol.20, 107–115 (2001). Article Google Scholar
Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature362, 761–763 (1993). ArticleCASPubMed Google Scholar
Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood97, 3333–3341 (2001). ArticleCASPubMed Google Scholar
Yamashita, Y. et al. Syndecan-4 is expressed by B lineage lymphocytes and can transmit a signal for formation of dendritic processes. J. Immunol.162, 5940–5948 (1999). CASPubMed Google Scholar
Lacaud, G., Carlsson, L. & Keller, G. Identification of a fetal hematopoietic precursor with B cell, T cell and macrophage potential. Immunity9, 827–838 (1998). ArticleCASPubMed Google Scholar
Singh, H. Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr. Opin. Immunol.8, 160–165 (1996). ArticleCASPubMed Google Scholar
Spain, L. M., Guerriero, A., Kunjibettu, S. & Scott, E. W. T cell development in PU.1-deficient mice. J. Immunol.163, 2681–2687 (1999). CASPubMed Google Scholar
Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature401, 556–562 (1999). ArticleCASPubMed Google Scholar
Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature407, 383–386 (2000). ArticleCASPubMed Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch 1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch 1. Immunity15, 225–236 (2001). ArticleCASPubMed Google Scholar
Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med.194, 1003–1012 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pui, J. C. et al. Notch 1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity11, 299–308 (1999). ArticleCASPubMed Google Scholar
Kawamoto, H., Ohmura, K. & Katsura, Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J. Immunol.161, 3799–3802 (1998). CASPubMed Google Scholar
Smith, L. C. & Davidson, E. H. The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol. Today13, 356–362 (1992). ArticleCASPubMed Google Scholar
Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med.190, 1617–1626 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood81, 2844–2853 (1993). CASPubMed Google Scholar
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.100, 64–119 (1983). ArticleCASPubMed Google Scholar