Redefinition of lymphoid progenitors (original) (raw)

References

  1. Gatti, R. A., Meuwissen, H. J. & Good, R. A. Mixed-leucocyte-culture response to leucocytes in severe combined immunodeficiency disease. Lancet 1, 235–236 (1971).
    Article CAS PubMed Google Scholar
  2. Lawton, A. R., Bockman, D. E. & Cooper, M. D. Treatment of autosomal recessive lymphopenic agammaglobulinemia by transplantation of matched allogeneic bone marrow. Am. J. Med. 54, 98–110 (1973).
    Article CAS PubMed Google Scholar
  3. Bosma, G. C., Custer, R. P. & Bosma, M. J. A severe combined immunodeficiency mutation in the mouse. Nature 301, 527–530 (1983).
    Article CAS PubMed Google Scholar
  4. Kawamoto, H., Ohmura, K. & Katsura, Y. Direct evidence for the commitment of hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver. Int. Immunol. 9, 1011–1019 (1997).
    Article CAS PubMed Google Scholar
  5. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).
    Article CAS PubMed Google Scholar
  6. Moore, M. A. S. & Owen, J. J. T. Experimental studies on the development of the thymus. J. Exp. Med. 126, 715–725 (1967).
    Article CAS PubMed PubMed Central Google Scholar
  7. LeDouarin, N. M. & Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142, 17–40 (1975).
    Article CAS Google Scholar
  8. Abramson, S., Miller, R. G. & Phillip, R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med. 145, 1567–1569 (1977).
    Article CAS PubMed PubMed Central Google Scholar
  9. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of w/wv mice. Cell 42, 71–79 (1985).
    Article CAS PubMed Google Scholar
  10. Keller, G., Paige, C., Gilboa, E. & Wagner, E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149–154 (1985).
    Article CAS PubMed Google Scholar
  11. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).
    Article CAS PubMed Google Scholar
  12. Wu, L., Antica, M., Johnson, G. R., Scollay, R. & Shortman, K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174, 1617–1627 (1991).
    Article CAS PubMed Google Scholar
  13. Matsuzaki, Y. et al. Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178, 1283–1292 (1993).
    Article CAS PubMed Google Scholar
  14. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).
    Article CAS PubMed Google Scholar
  15. Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hematopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1213 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  16. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).
    Article CAS PubMed Google Scholar
  17. Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).
    Article CAS PubMed Google Scholar
  18. Hao, Q.-L., et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97, 3683–3690 (2001).
    Article CAS PubMed Google Scholar
  19. Cumano, A., Paige, C. J., Iscove, N. N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).
    Article CAS PubMed Google Scholar
  20. Delassus, S. & Cumano, A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity 4, 97–106 (1996).
    Article CAS PubMed Google Scholar
  21. Katsura, Y. & Kawamoto, H. Stepwise lineage restriction of progenitors in lympho-myelopoiesis. Int. Rev. Immunol. 20, 1–20 (2001).
    Article CAS PubMed Google Scholar
  22. Kawamoto, H., Ohmura, K., Fujimoto, S. & Katsura, Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J. Immunol. 162, 2725–2731 (1999).
    CAS PubMed Google Scholar
  23. Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).
    Article CAS PubMed Google Scholar
  24. Egawa, T. et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15, 323–334 (2001).
    Article CAS PubMed Google Scholar
  25. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).
    Article CAS PubMed Google Scholar
  26. Traver, D. et al. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood 98, 627–635 (2001).
    Article CAS PubMed Google Scholar
  27. Boyd, A. W. & Schrader, J. W. Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine. Nature 297, 691–693 (1982).
    Article CAS PubMed Google Scholar
  28. Klinken, S. P., Alexander, W. S. & Adams, J. M. Hemopoietic lineage switch: v-raf oncogene converts Eμ-myc transgenic B cells into macrophages. Cell 53, 857–867 (1988).
    Article CAS PubMed Google Scholar
  29. Borrello, M. A. & Phipps, R. P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today 17, 471–475 (1996).
    Article CAS PubMed Google Scholar
  30. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).
    Article CAS Google Scholar
  31. Matutes, E. et al. Definition of acute biphenotypic leukemia. Haematologica 82, 64–66 (1997).
    CAS PubMed Google Scholar
  32. Schmit, C. A. & Przybylski, G. K. What can we learn from leukemia as for the process of lineage commitment in hematopoiesis? Int. Rev. Immunol. 20, 107–115 (2001).
    Article Google Scholar
  33. Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).
    Article CAS PubMed Google Scholar
  34. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3341 (2001).
    Article CAS PubMed Google Scholar
  35. Yamashita, Y. et al. Syndecan-4 is expressed by B lineage lymphocytes and can transmit a signal for formation of dendritic processes. J. Immunol. 162, 5940–5948 (1999).
    CAS PubMed Google Scholar
  36. Lacaud, G., Carlsson, L. & Keller, G. Identification of a fetal hematopoietic precursor with B cell, T cell and macrophage potential. Immunity 9, 827–838 (1998).
    Article CAS PubMed Google Scholar
  37. Singh, H. Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr. Opin. Immunol. 8, 160–165 (1996).
    Article CAS PubMed Google Scholar
  38. Spain, L. M., Guerriero, A., Kunjibettu, S. & Scott, E. W. T cell development in PU.1-deficient mice. J. Immunol. 163, 2681–2687 (1999).
    CAS PubMed Google Scholar
  39. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).
    Article CAS PubMed Google Scholar
  40. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).
    Article CAS PubMed Google Scholar
  41. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch 1. Immunity 10, 547–558 (1999).
    Article CAS PubMed Google Scholar
  42. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch 1. Immunity 15, 225–236 (2001).
    Article CAS PubMed Google Scholar
  43. Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  44. Pui, J. C. et al. Notch 1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).
    Article CAS PubMed Google Scholar
  45. Kawamoto, H., Ohmura, K. & Katsura, Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J. Immunol. 161, 3799–3802 (1998).
    CAS PubMed Google Scholar
  46. Smith, L. C. & Davidson, E. H. The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol. Today 13, 356–362 (1992).
    Article CAS PubMed Google Scholar
  47. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).
    Article CAS PubMed Google Scholar
  48. Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med. 190, 1617–1626 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  49. Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853 (1993).
    CAS PubMed Google Scholar
  50. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).
    Article CAS PubMed Google Scholar

Download references