Wallace, D. C. Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. Cold Spring Harb. Symp. Quant. Biol.74, 383–393 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dhar, S. S., Ongwijitwat, S. & Wong-Riley, M. T. Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J. Biol. Chem.283, 3120–3129 (2008). ArticleCASPubMed Google Scholar
Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA91, 1309–1313 (1994). ArticleCASPubMedPubMed Central Google Scholar
Gleyzer, N., Vercauteren, K. & Scarpulla, R. C. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol.25, 1354–1366 (2005). ArticleCASPubMedPubMed Central Google Scholar
Blesa, J. R., Prieto-Ruiz, J. A., Hernandez, J. M. & Hernandez-Yago, J. NRF-2 transcription factor is required for human TOMM20 gene expression. Gene391, 198–208 (2007). ArticleCASPubMed Google Scholar
Peralta, S., Wang, X. & Moraes, C. T. Mitochondrial transcription: lessons from mouse models. Biochim. Biophys. Acta1819, 961–969 (2012). ArticleCASPubMed Google Scholar
Richter-Dennerlein, R., Dennerlein, S. & Rehling, P. Integrating mitochondrial translation into the cellular context. Nat. Rev. Mol. Cell Biol.16, 586–592 (2015). ArticlePubMed Google Scholar
Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell113, 159–170 (2003). ArticleCASPubMed Google Scholar
Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA100, 15924–15929 (2003). ArticleCASPubMedPubMed Central Google Scholar
Michalik, L. et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev.58, 726–741 (2006). ArticleCASPubMed Google Scholar
Dufour, C. R. et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab.5, 345–356 (2007). ArticleCASPubMed Google Scholar
Alaynick, W. A. et al. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab.6, 13–24 (2007). ArticleCASPubMed Google Scholar
Mouchiroud, L., Eichner, L. J., Shaw, R. J. & Auwerx, J. Transcriptional coregulators: fine-tuning metabolism. Cell Metab.20, 26–40 (2014). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr.93, 884S–890S (2011). ArticleCASPubMedPubMed Central Google Scholar
Handschin, C. & Spiegelman, B. M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev.27, 728–735 (2006). ArticleCASPubMed Google Scholar
Seth, A. et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab.6, 236–245 (2007). ArticleCASPubMedPubMed Central Google Scholar
Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab.11, 213–219 (2010). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Roves, P. M., Osler, M. E., Holmstrom, M. H. & Zierath, J. R. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem.283, 35724–35734 (2008). ArticleCASPubMed Google Scholar
Wu, H. et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science296, 349–352 (2002). ArticleCASPubMed Google Scholar
Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab.2, 21–33 (2005). References 21–25 give examples of how different kinases signal to induce mitochondrial biogenesis. ArticleCASPubMed Google Scholar
Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature470, 359–365 (2011). A description of how telomere dysfunction can initiate reprogramming of mitochondrial regulation. ArticleCASPubMedPubMed Central Google Scholar
Canto, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab.15, 838–847 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jazwinski, S. M. The retrograde response: when mitochondrial quality control is not enough. Biochim. Biophys. Acta1833, 400–409 (2013). ArticleCASPubMed Google Scholar
Liu, Z. & Butow, R. A. Mitochondrial retrograde signaling. Annu. Rev. Genet.40, 159–185 (2006). ArticleCASPubMed Google Scholar
Sekito, T., Thornton, J. & Butow, R. A. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol. Biol. Cell11, 2103–2115 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jazwinski, S. M. & Kriete, A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front. Physiol.3, 139 (2012). ArticlePubMedPubMed Central Google Scholar
Friis, R. M. et al. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep.7, 565–574 (2014). ArticleCASPubMed Google Scholar
Heeren, G. et al. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging1, 622–636 (2009). ArticleCASPubMedPubMed Central Google Scholar
Caballero, A. et al. Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. Mol. Cell42, 390–400 (2011). References 34–36 give examples of energetic retrograde signals in yeast involving the Ampk, TOR and Sir2 pathways. ArticleCASPubMed Google Scholar
Curtis, R., O'Connor, G. & DiStefano, P. S. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell5, 119–126 (2006). ArticleCASPubMed Google Scholar
Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev.18, 3004–3009 (2004). ArticleCASPubMedPubMed Central Google Scholar
Edwards, C. B., Copes, N., Brito, A. G., Canfield, J. & Bradshaw, P. C. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS ONE8, e58345 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gallo, M., Park, D. & Riddle, D. L. Increased longevity of some C. elegans mitochondrial mutants explained by activation of an alternative energy-producing pathway. Mech. Ageing Dev.132, 515–518 (2011). ArticleCASPubMed Google Scholar
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science331, 456–461 (2011). ArticleCASPubMed Google Scholar
Lerner, C. et al. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell12, 966–977 (2013). ArticleCASPubMed Google Scholar
Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol.13, 566–578 (2012). ArticleCASPubMed Google Scholar
Arnould, T. et al. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J.21, 53–63 (2002). ArticleCASPubMedPubMed Central Google Scholar
Luo, Y., Bond, J. D. & Ingram, V. M. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc. Natl Acad. Sci. USA94, 9705–9710 (1997). ArticleCASPubMedPubMed Central Google Scholar
Amuthan, G. et al. Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene21, 7839–7849 (2002). ArticleCASPubMed Google Scholar
Srinivasan, S. et al. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogenehttp://dx.doi.org/10.1038/onc.2015.227, (2015).
Biswas, G., Anandatheerthavarada, H. K., Zaidi, M. & Avadhani, N. G. Mitochondria to nucleus stress signaling: a distinctive mechanism of NFκB/Rel activation through calcineurin-mediated inactivation of IκBβ. J. Cell Biol.161, 507–519 (2003). ArticleCASPubMedPubMed Central Google Scholar
Biswas, G. et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J.18, 522–533 (1999). ArticleCASPubMedPubMed Central Google Scholar
Formentini, L., Sanchez-Arago, M., Sanchez-Cenizo, L. & Cuezva, J. M. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol. Cell45, 731–742 (2012). ArticleCASPubMed Google Scholar
Amuthan, G. et al. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J.20, 1910–1920 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lim, J. H. et al. Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia49, 1924–1936 (2006). ArticleCASPubMed Google Scholar
Guha, M., Fang, J. K., Monks, R., Birnbaum, M. J. & Avadhani, N. G. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol. Biol. Cell21, 3578–3589 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miyadera, H. et al. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J. Biol. Chem.276, 7713–7716 (2001). ArticleCASPubMed Google Scholar
Lee, S. J., Hwang, A. B. & Kenyon, C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol.20, 2131–2136 (2010). Identification of a signalling mechanism involving ROS in lifespan extension following mild respiration inhibition. ArticleCASPubMedPubMed Central Google Scholar
Inoue, H. et al. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev.19, 2278–2283 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zarse, K. et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal. Cell Metab.15, 451–465 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schmeisser, S. et al. Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension. Aging Cell12, 508–517 (2013). ArticleCASPubMed Google Scholar
Monaghan, R. M. et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat. Cell Biol.17, 782–792 (2015). Identification of a novel communication mechanism involving the nuclear translocation of an isoform of CLK-1, which regulates stress resistance and lifespan. ArticleCASPubMedPubMed Central Google Scholar
Owusu-Ansah, E., Yavari, A., Mandal, S. & Banerjee, U. Distinct mitochondrial retrograde signals control the G1–S cell cycle checkpoint. Nat. Genet.40, 356–361 (2008). ArticleCASPubMed Google Scholar
Owusu-Ansah, E., Song, W. & Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell155, 699–712 (2013). A description of non-cell-autonomous-mediated lifespan extension through ROS, the UPRmtand insulin signalling following mitochondrial perturbation inD. melanogastermuscles. ArticleCASPubMed Google Scholar
Lu, W. et al. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction. Cell Death Dis.3, e422 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. L. & Kunsch, C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr. Pharm. Des.10, 879–891 (2004). ArticleCASPubMed Google Scholar
Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature419, 316–321 (2002). ArticleCASPubMed Google Scholar
Tan, W. Q., Wang, K., Lv, D. Y. & Li, P. F. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J. Biol. Chem.283, 29730–29739 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, T., Nioi, P. & Pickett, C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem.284, 13291–13295 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chae, S. et al. A systems approach for decoding mitochondrial retrograde signaling pathways. Sci. Signal.6, rs4 (2013). ArticleCASPubMed Google Scholar
Acin-Perez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab.19, 1020–1033 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shi, S. Y. et al. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat. Commun.6, 7415 (2015). ArticlePubMed Google Scholar
Quiros, P. M., Langer, T. & Lopez-Otin, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol.16, 345–359 (2015). ArticleCASPubMed Google Scholar
Jovaisaite, V., Mouchiroud, L. & Auwerx, J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol.217, 137–143 (2014). ArticleCASPubMedPubMed Central Google Scholar
Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature497, 451–457 (2013). Establishment of the concept of mitonuclear imbalance to explain the identification ofMrps5as a mouse longevity gene and the pro-longevity effect of mitochondrial translation inhibition. ArticleCASPubMedPubMed Central Google Scholar
Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell144, 79–91 (2011). The first description of non-cell-autonomous-mediated longevity following mitochondrial stress. ArticleCASPubMedPubMed Central Google Scholar
Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell154, 430–441 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pirinen, E. et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab.19, 1034–1041 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gariani, K. et al. Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease. Hepatologyhttp://dx.doi.org/10.1002/hep.28245, (2015). References 21, 22, 28–29 and 77–79 describe mechanisms of mitochondrial regulation involving NAD+ and SIRT1.
Haynes, C. M., Yang, Y., Blais, S. P., Neubert, T. A. & Ron, D. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell37, 529–540 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science337, 587–590 (2012). ArticleCASPubMedPubMed Central Google Scholar
Benedetti, C., Haynes, C. M., Yang, Y., Harding, H. P. & Ron, D. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics174, 229–239 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haynes, C. M., Petrova, K., Benedetti, C., Yang, Y. & Ron, D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell13, 467–480 (2007). ArticleCASPubMed Google Scholar
Nargund, A. M., Fiorese, C. J., Pellegrino, M. W., Deng, P. & Haynes, C. M. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol. Cell58, 123–133 (2015). References 80–84 unravel the molecular mechanisms of UPRmtregulation in worms. ArticleCASPubMedPubMed Central Google Scholar
Pimenta de Castro, I. et al. Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ.19, 1308–1316 (2012). ArticleCASPubMedPubMed Central Google Scholar
Horibe, T. & Hoogenraad, N. J. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE2, e835 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J.21, 4411–4419 (2002). The first description of the UPRmt. ArticleCASPubMedPubMed Central Google Scholar
Aldridge, J. E., Horibe, T. & Hoogenraad, N. J. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE2, e874 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kohler, F., Muller-Rischart, A. K., Conradt, B. & Rolland, S. G. The loss of LRPPRC function induces the mitochondrial unfolded protein response. Aging7, 701–717 (2015). ArticlePubMedPubMed Central Google Scholar
Al-Furoukh, N. et al. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochim. Biophys. Acta1853, 2580–2591 (2015). ArticleCASPubMed Google Scholar
Siegelin, M. D. et al. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Invest.121, 1349–1360 (2011). ArticlePubMedPubMed Central Google Scholar
Jin, S. M. & Youle, R. J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy9, 1750–1757 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dogan, S. A. et al. Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab.19, 458–469 (2014). ArticleCASPubMed Google Scholar
Song, M., Mihara, K., Chen, Y., Scorrano, L. & Dorn, G. W. 2nd. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab.21, 273–285 (2015). ArticleCASPubMedPubMed Central Google Scholar
Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 . EMBO Mol. Med.6, 721–731 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab.20, 856–869 (2014). ArticleCASPubMed Google Scholar
Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science347, 1374–1377 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell158, 1415–1430 (2014). ArticleCASPubMedPubMed Central Google Scholar
Papa, L. & Germain, D. Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J. Cell Sci.124, 1396–1402 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bahat, A. et al. Transcriptional activation of LON gene by a new form of mitochondrial stress: a role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol. Cell Endocrinol.408, 62–72 (2015). ArticleCASPubMed Google Scholar
Bahat, A. et al. StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol. Endocrinol.28, 208–224 (2014). ArticleCASPubMed Google Scholar
Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol.11, 545–555 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tan, K. et al. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat. Commun.6, 6580 (2015). ArticleCASPubMed Google Scholar
Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell6, 1099–1108 (2000). ArticleCASPubMed Google Scholar
Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell11, 619–633 (2003). ArticleCASPubMed Google Scholar
Donnelly, N., Gorman, A. M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci.70, 3493–3511 (2013). ArticleCASPubMed Google Scholar
Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem.286, 10939–10949 (2011). ArticleCASPubMedPubMed Central Google Scholar
Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol.153, 1011–1022 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K. & Hayashi, H. TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death. EMBO J.24, 1243–1255 (2005). ArticleCASPubMedPubMed Central Google Scholar
Baker, B. M., Nargund, A. M., Sun, T. & Haynes, C. M. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet.8, e1002760 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rainbolt, T. K., Atanassova, N., Genereux, J. C. & Wiseman, R. L. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab.18, 908–919 (2013). ArticleCASPubMedPubMed Central Google Scholar
Michel, S., Canonne, M., Arnould, T. & Renard, P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion21, 58–68 (2015). ArticleCASPubMed Google Scholar
Moullan, N. et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep.10, 1681–1691 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bruning, A., Brem, G. J., Vogel, M. & Mylonas, I. Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition. Exp. Cell Res.320, 281–289 (2014). ArticleCASPubMed Google Scholar
Moisoi, N. et al. Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ.16, 449–464 (2009). ArticleCASPubMed Google Scholar
Evstafieva, A. G. et al. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4. Cell Death Dis.5, e1511 (2014). ArticleCASPubMedPubMed Central Google Scholar
Martinez-Reyes, I., Sanchez-Arago, M. & Cuezva, J. M. AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. Biochem. J.444, 249–259 (2012). ArticleCASPubMed Google Scholar
Silva, J. M., Wong, A., Carelli, V. & Cortopassi, G. A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis.34, 357–365 (2009). ArticleCASPubMed Google Scholar
Viader, A. et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron77, 886–898 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. & Chen, X. J. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature524, 481–484 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wrobel, L. et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature524, 485–488 (2015). References 121 and 122 identify a cytosolic stress response activated by mitochondrial stress. ArticleCASPubMed Google Scholar
Copeland, J. M. et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr. Biol.19, 1591–1598 (2009). ArticleCASPubMed Google Scholar
Lee, C. et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab.21, 443–454 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hashimoto, Y. et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ. Proc. Natl Acad. Sci. USA98, 6336–6341 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chau, M. D., Gao, J., Yang, Q., Wu, Z. & Gromada, J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway. Proc. Natl Acad. Sci. USA107, 12553–12558 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tyynismaa, H. et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet.19, 3948–3958 (2010). ArticleCASPubMed Google Scholar
Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol.10, 806–818 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med.19, 83–92 (2013). References 124 and 128–130 report examples of non-cell-autonomous signalling of mitochondrial stress in mammals. ArticleCASPubMed Google Scholar
Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell1, 633–644 (2001). ArticleCASPubMed Google Scholar
Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics139, 1247–1259 (1995). CASPubMedPubMed Central Google Scholar
Yang, W. & Hekimi, S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol.8, e1000556 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kirchman, P. A., Kim, S., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics152, 179–190 (1999). CASPubMedPubMed Central Google Scholar
Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science310, 1193–1196 (2005). ArticleCASPubMed Google Scholar
Hwang, A. B. et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA111, E4458–E4467 (2014). ArticleCASPubMedPubMed Central Google Scholar
Baruah, A. et al. CEP-1, the Caenorhabditis elegans p53 homolog, mediates opposing longevity outcomes in mitochondrial electron transport chain mutants. PLoS Genet.10, e1004097 (2014). ArticleCASPubMedPubMed Central Google Scholar
Walter, L., Baruah, A., Chang, H. W., Pace, H. M. & Lee, S. S. The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans. PLoS Biol.9, e1001084 (2011). ArticleCASPubMedPubMed Central Google Scholar
Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature521, 525–528 (2015). A description of how mitochondrial biogenesis and mitophagy are coordinately regulated to determine lifespan inC. elegans. ArticleCASPubMed Google Scholar
Ristow, M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat. Med.20, 709–711 (2014). ArticleCASPubMed Google Scholar
Zhang, Y., Shao, Z., Zhai, Z., Shen, C. & Powell-Coffman, J. A. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS ONE4, e6348 (2009). ArticleCASPubMedPubMed Central Google Scholar
Heidler, T., Hartwig, K., Daniel, H. & Wenzel, U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology11, 183–195 (2010). ArticleCASPubMed Google Scholar
Lee, H. et al. The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior. J. Biol. Chem.283, 14988–14993 (2008). ArticleCASPubMedPubMed Central Google Scholar
Liu, X. et al. Evolutionary conservation of the _clk-1_-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev.19, 2424–2434 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dell'agnello, C. et al. Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet.16, 431–444 (2007). ArticleCASPubMed Google Scholar
Zordan, M. A. et al. Post-transcriptional silencing and functional characterization of the Drosophila melanogaster homolog of human Surf1. Genetics172, 229–241 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pulliam, D. A. et al. Complex IV-deficient Surf1−/− mice initiate mitochondrial stress responses. Biochem. J.462, 359–371 (2014). ArticleCASPubMed Google Scholar
Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H. & Kowaltowski, A. J. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell7, 552–560 (2008). References 147–152 give some examples of mitochondrial stress affecting health and lifespan in mammals. ArticleCASPubMed Google Scholar
Kim, H. J., Morrow, G., Westwood, J. T., Michaud, S. & Tanguay, R. M. Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp. Gerontol.45, 611–620 (2010). ArticleCASPubMed Google Scholar
Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov.12, 465–483 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dietrich, A., Wallet, C., Iqbal, R. K., Gualberto, J. M. & Lotfi, F. Organellar non-coding RNAs: emerging regulation mechanisms. Biochimie117, 48–62 (2015). ArticleCASPubMed Google Scholar
Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J.33, 2142–2156 (2014). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Samuel, B. S., Breen, P. C. & Ruvkun, G. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature508, 406–410 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pellegrino, M. W. et al. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature516, 414–417 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wang, D., Malo, D. & Hekimi, S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1α in long-lived Mclk1+/− mouse mutants. J. Immunol.184, 582–590 (2010). ArticleCASPubMed Google Scholar
Wang, D. et al. An enhanced immune response of Mclk1+/− mutant mice is associated with partial protection from fibrosis, cancer and the development of biomarkers of aging. PLoS ONE7, e49606 (2012). ArticleCASPubMedPubMed Central Google Scholar
Baixauli, F. et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab.22, 485–498 (2015). References 160–167 report several examples of crosstalk between mitochondrial stress signalling and immunity. ArticleCASPubMedPubMed Central Google Scholar
Williams, D. S., Cash, A., Hamadani, L. & Diemer, T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell8, 765–768 (2009). ArticleCASPubMed Google Scholar
Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science298, 2398–2401 (2002). A description of the longevity phenotypes ofC. elegansETC mutants. ArticleCASPubMed Google Scholar
Yang, W. & Hekimi, S. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell9, 433–447 (2010). ArticleCASPubMed Google Scholar
Liu, J. et al. Drosophila sbo regulates lifespan through its function in the synthesis of coenzyme Q in vivo. J. Genet. Genom.38, 225–234 (2011). ArticleCAS Google Scholar
Lemire, B. D., Behrendt, M., DeCorby, A. & Gaskova, D. C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech. Ageing Dev.130, 461–465 (2009). ArticleCASPubMed Google Scholar