Proteasomes and their kin: proteases in the machine age (original) (raw)
References
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471 (1997). Despite being assembled from 14 unique polypeptides, the eukaryotic 20S proteasome is remarkably similar to its archaebacterial cousin. Furthermore, the closed state of the axial pore indicated that the 19S complex would regulate pore gating. CASPubMed Google Scholar
Unno, M. et al. The stucture of the mammalian 20S proteasome at 2.75 Å resolution. Structure10, 609–618 (2002). CASPubMed Google Scholar
Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science268, 533–539 (1995). CASPubMed Google Scholar
Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature408, 115–120 (2000). The structure of a non-ATPase regulatory complex bound to the yeast 20S complex led to a persuasive molecular model for protease pore opening by a regulatory complex. CASPubMed Google Scholar
Wang, J., Hartling, J. A. & Flanagan, J. M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell91, 447–456 (1997). CASPubMed Google Scholar
Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl Acad. Sci. USA94, 6070–6074 (1997). CASPubMedPubMed Central Google Scholar
Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). CASPubMed Google Scholar
Ogura, T. & Wilkinson, A. J. AAA+ superfamily ATPases: common structure — diverse function. Genes Cells6, 575–597 (2001). CASPubMed Google Scholar
Wolf, S. et al. Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J. Mol. Biol.277, 13–25 (1998). CASPubMed Google Scholar
Zwickl, P., Ng, D., Woo, K. M., Klenk, H. P. & Goldberg, A. L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem.274, 26008–26014 (1999). CASPubMed Google Scholar
Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin–conjugate degradation and related to the COP9-signalosome and eIF3. Cell94, 615–623 (1998). The 19S complex consists of two discrete subcomplexes — the first (lid) has homology to two other complexes and the second (base) is similar to the simpler regulatory complexes of bacteria. CASPubMed Google Scholar
Rubin, C. M., Glickman, M. H., Larsen, C. N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J.17, 4909–4919 (1998). The six ATPases in the base of the 19S complex are functionally distinct. CASPubMedPubMed Central Google Scholar
Fu, H., Reis, N., Lee, Y., Glickman, M. H. & Vierstra, R. D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J.20, 7096–7107 (2001). CASPubMedPubMed Central Google Scholar
Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell11, 3425–3439 (2000). CASPubMedPubMed Central Google Scholar
Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell10, 495–507 (2002). CASPubMed Google Scholar
Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70, 503–533 (2001). CASPubMed Google Scholar
Deshaies, R. J. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol.15, 435–467 (1999). CASPubMed Google Scholar
Conaway, R. C. & Conaway, J. W. The von Hippel–Lindau tumor suppressor complex and regulation of hypoxia-inducible transcription. Adv. Cancer Res.85, 1–12 (2002). CASPubMed Google Scholar
Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell9, 931–943 (2002). CASPubMed Google Scholar
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63, 1129–1136 (1990). CASPubMed Google Scholar
Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J.19, 94–102 (2000). A polyubiquitin chain that is four ubiquitins long is the minimum signal required for efficient targeting to 26S proteasomes. CASPubMedPubMed Central Google Scholar
Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem.269, 7059–7061 (1994). CASPubMed Google Scholar
Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol.4, 725–730 (2002). CASPubMed Google Scholar
Hartmann-Petersen, R., Seeger, M. & Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci.28, 26–31 (2003). CASPubMed Google Scholar
Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416, 763–767 (2002). CASPubMed Google Scholar
van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol.16, 6020–6028 (1996). CASPubMedPubMed Central Google Scholar
Xie, Y. & Varshavsky, A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nature Cell Biol.4, 1003–1007 (2002). CASPubMed Google Scholar
You, J. & Pickart, C. M. A hect domain E3 enzyme assembles novel polyubiquitin chains. J. Biol. Chem.276, 19871–19878 (2001). CASPubMed Google Scholar
Wilkinson, C. R. et al. Proteins containing the UBA domain are able to bind multi-ubiquitin chains. Nature Cell Biol.3, 939–943 (2001). CASPubMed Google Scholar
Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature391, 715–718 (1997). Google Scholar
Raasi, S. & Pickart, C. M. Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem.278, 8951–8959 (2003). CASPubMed Google Scholar
Glockzin, S., Ogi, F. -X., Hengstermann, A., Scheffner, M. & Blattner, C. Involvement of the DNA repair protein hHR23 in p53 degradation. Mol. Cell. Biol.23, 8960–8969 (2003). CASPubMedPubMed Central Google Scholar
Bloom, J., Amador, V., Bartolini, F., DeMartino, G. & Pagano, M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell115, 71–82 (2003). CASPubMed Google Scholar
Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA98, 10584–10589 (2001). CASPubMedPubMed Central Google Scholar
Hoskins, J. R., Yanagihara, K., Mizuuchi, K. & Wickner, S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc. Natl Acad. Sci. USA17, 11037–11042 (2002). Google Scholar
Levchenko, I., Yamauchi, M. & Baker, T. A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev.11, 1561–1572 (1997). CASPubMed Google Scholar
Gonzalez, M., Rasulova, F., Maurizi, M. R. & Woodgate, R. Subunit-specific degradation of the UmuD/D′ heterodimer by the ClpXP protease: the role of trans recognition in UmuD′ stability. EMBO J.19, 5251–5258 (2000). CASPubMedPubMed Central Google Scholar
Gonciarz-Swiatek, M. et al. Recognition, targeting, and hydrolysis of the λ O replication protein by the ClpP/ClpX protease. J. Biol. Chem.274, 13999–14005 (1999). CASPubMed Google Scholar
Karzai, A. W., Roche, E. D. & Sauer, R. T. The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue. Nature Struct. Biol.7, 449–445 (2000). CASPubMed Google Scholar
Zhang, M., Pickart, C. M. & Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J.22, 1488–1496 (2003). CASPubMedPubMed Central Google Scholar
Coffino, P. Regulation of cellular polyamines by antizyme. Nature Rev. Mol. Cell Biol.2, 188–194 (2001). CAS Google Scholar
Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell7, 627–637 (2001). Prokaryotic chambered proteases unfold their substrates starting at the degradation signal, and without reference to the thermodynamic stability of the substrate. CASPubMed Google Scholar
Burton, R. E., Siddiqui, S. M., Kim, Y. -I., Baker, T. A. & Sauer, R. T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J.20, 3092–3100 (2001). CASPubMedPubMed Central Google Scholar
Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of a AAA+ degradation machine. Cell114, 511–520 (2003). Studies with a prokaryotic protease show that the cost of translocation consumes much of the energy that is used in degradation. CASPubMed Google Scholar
Grantcharova, V., Alm, E. J., Baker, D. & Horwich, A. L. Mechanisms of protein folding. Curr. Opin. Struct. Biol.11, 70–82 (2001). CASPubMed Google Scholar
Weber-Ban, E. U., Reid, G. B., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature410, 90–93 (1999). Google Scholar
Matouschek, A. Protein unfolding — an important process in vivo? Curr. Opin. Struct. Biol.13, 98–109 (2003). CASPubMed Google Scholar
Verma, R., McDonald, H., Yates, J. R. & Deshaies, R. J. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin–Cdk. Mol. Cell8, 439–448 (2001). CASPubMed Google Scholar
Levchenko, I., Luo, L. & Baker, T. A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev.9, 2399–2408 (1995). CASPubMed Google Scholar
Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl Acad. Sci. USA91, 12218–12222 (1994). CASPubMedPubMed Central Google Scholar
Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell3, 687–695 (1999). CASPubMed Google Scholar
Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T. & Johnston, S. A. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol. Cell7, 981–991 (2001). CASPubMed Google Scholar
Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol.1, 221–226 (1999). CASPubMed Google Scholar
Strickland, E., Hakala, K., Thomas, P. J. & DeMartino, G. N. Recognition of misfolded proteins by PA700, the regulatory subcomplex of the 26S proteasome. J. Biol. Chem.275, 5565–5572 (2000). CASPubMed Google Scholar
Liu, C. et al. Conformational remodeling of proteasomal substrates by PA700, the 19S regulatory complex of the 26S proteasome. J. Biol. Chem.277, 26815–26820 (2002). CASPubMed Google Scholar
Johnson, E. S., Gonda, D. K. & Varshavsky, A. cis_–_trans recognition and subunit-specific degradation of short-lived proteins. Nature346, 287–291 (1990). CASPubMed Google Scholar
Chen, Z. et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin–proteasome pathway. Genes Dev.9, 1586–1597 (1995). CASPubMed Google Scholar
Hoskins, J. R., Singh, S. K., Maruizi, M. R. & Wickner, S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl Acad. Sci. USA97, 8892–8897 (2000). CASPubMedPubMed Central Google Scholar
Singh, S. K., Grimaud, R., Hoskins, J. R., Wickner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA97, 8898–8903 (2000). CASPubMedPubMed Central Google Scholar
Kim, Y. -I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell5, 639–648 (2000). CASPubMed Google Scholar
Flynn, J. M., Neher, S. B., Kim, Y. -I., Sauer, R. T. & Baker, T. A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell11, 1671–1683 (2003). Google Scholar
Ortega, J., Singh, S. K., Ishikawa, T., Maurizi, M. R. & Steven, A. C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell6, 1515–1521 (2000). Presents especially dramatic electron-microscopy images of substrate internalization by ClpXP. CASPubMed Google Scholar
Sousa, M. C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell103, 633–643 (2000). CASPubMed Google Scholar
Wang, J. et al. Crystal structures of the HslVU peptidase–ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure9, 177–184 (2001). CASPubMed Google Scholar
Guo, F., Maurizi, M. R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem.277, 46743–46752 (2002). CASPubMed Google Scholar
Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell11, 69–78 (2003). CASPubMed Google Scholar
Carrion-Vasquez, M. et al. The mechanical stability of ubiquitin is linkage-dependent. Nature Struct. Biol.10, 738–743 (2003). Google Scholar
Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the 26S proteasome. Nature419, 403–407 (2002). CASPubMed Google Scholar
Petroski, M. D. & Deshaies, R. J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell11, 1435–1444 (2003). CASPubMed Google Scholar
Rape, M. & Jentsch, S. Taking a bite: proteasomal processing. Nature Cell Biol.4, E113–E116 (2002). CASPubMed Google Scholar
Verma, R. & Deshaies, R. A proteasome howdunit: the case of the missing signal. Cell101, 341–344 (2000). CASPubMed Google Scholar
Lin, L. & Kobayashi, M. Stability of the Rel homology domain is critical for generation of NF-κB p50 subunits. J. Biol. Chem.278, 31479–31485 (2003). CASPubMed Google Scholar
Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HslU. Structure9, 1107–1116 (2001). CASPubMed Google Scholar
Kohler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell7, 1143–1152 (2001). One of the six ATPase subunits of the 19S complex has a specific role in opening the axial pore of the 20S complex. CASPubMed Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol.7, 1062–1067 (2000). CASPubMed Google Scholar
Kloetzel, P. -M. Antigen processing by the proteasome. Nature Rev. Mol. Cell Biol.2, 179–187 (2001). CAS Google Scholar
Forster, A. & Hill, C. P. Proteasome degradation: enter the substrate. Trends Cell Biol.13, 550–553 (2003). CASPubMed Google Scholar
Reid, B. G., Fenton, W. A., Horwich, A. L. & Weber-Ban, E. U. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc. Natl Acad. Sci. USA98, 3768–3772 (2001). CASPubMedPubMed Central Google Scholar
Lee, C., Prakash, S. & Matouschek, A. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J. Biol. Chem.277, 34750–34765 (2002). Google Scholar
Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NFκB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol.19, 3664–3673 (1999). CASPubMedPubMed Central Google Scholar
Liu, C. -W., Corboy, M. J., DeMartino, G. N. & Thomas, P. J. Endoproteolytic activity of the proteasome. Science299, 408–411 (2003). Provides some of the clearest evidence that proteasome proteolysis can begin at an internal loop of the polypeptide chain of the substrate. CASPubMed Google Scholar
Kisselev, A. F., Kaganovich, D. & Goldberg, A. L. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. Evidence for peptide-induced channel opening in the α-rings. J. Biol. Chem.277, 22260–22770 (2002). CASPubMed Google Scholar
Cascio, P., Call, M., Petre, B. M., Walz, T. & Goldberg, A. L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J.21, 2636–2645 (2002). CASPubMedPubMed Central Google Scholar
Tanahashi, N. et al. Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem.275, 4336–4345 (2000). Google Scholar
Wintrode, P. L., Makhatadze, G. I. & Privalov, P. L. Thermodynamics of ubiquitin unfolding. Proteins18, 246–253 (1994). CASPubMed Google Scholar
Tran, H. J., Allen, M. D., Lowe, J. & Bycroft, M. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry42, 11460–11465 (2003). CASPubMed Google Scholar
Ambroggio, X. I., Rees, D. C. & Deshaies, R. J. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. Jan 2004 (doi:10.1371/journal.pbio.0020002).
Maytal-Kivity, V., Reis, N., Hofmann, K. & Glickman, M. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokayotes, is critical for Rpn11 function. BMC Biochem.3, 28–38 (2002). PubMedPubMed Central Google Scholar
Verma, R. et al. Role of Rpn11 metalloprotease motif in deubiquitination and degradation by the 26S proteasome. Science298, 611–615 (2002). CASPubMed Google Scholar
Borodovsky, A. et al. A novel active site directed probe specific for deubiquitinating enzyme reveals proteasome association of Usp14. EMBO J.20, 5187–5196 (2001). CASPubMedPubMed Central Google Scholar
Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature385, 737–740 (1997). CASPubMed Google Scholar
Li, T., Naqvi, N. I., Hang, H. & Teo, T. S. Identification of a 26S proteasome-associated UCH in fission yeast. Biochem. Biophys. Res. Commun.272, 170–175 (2000). Google Scholar
Holzl, H. et al. The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J. Cell Biol.150, 119–130 (2000). CASPubMedPubMed Central Google Scholar
Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol.18, 3149–3162 (1998). CASPubMedPubMed Central Google Scholar
Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell11, 3365–3380 (2000). CASPubMedPubMed Central Google Scholar
Adams, J. Proteasome inhibitors as new anticancer drugs. Curr. Opin. Oncol.14, 628–634 (2002). CASPubMed Google Scholar
Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol.21, 921–926 (2003). CAS Google Scholar
Finley, D. Ubiquitin chained and crosslinked. Nature Cell Biol.4, E121–E123 (2002). CASPubMed Google Scholar
Ortega, J., Lee, H. S., Maurizi, M. R. & Steven, A. C. Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J.21, 4938–4949 (2002). CASPubMedPubMed Central Google Scholar