Organization of vesicular trafficking in epithelia (original) (raw)
Cereijido, M., Contreras, R. G. & Shoshani, L. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol. Rev.84, 1229–1262 (2004). CASPubMed Google Scholar
Palade, G. E. Intracellular aspects of the process of protein secretion. Science189, 374–358 (1975). Google Scholar
Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A. & Sabatini, D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol.77, 853–880 (1978). A landmark paper that characterized the formation of an epitheliumin vitro. CASPubMed Google Scholar
Misfeldt, D. S., Hammamoto, S. T. & Pitelka, D. R. Transepithelial transport in cell culture. Proc. Natl Acad. Sci. USA73, 1212–1216 (1976). CASPubMedPubMed Central Google Scholar
Rodriguez-Boulan, E. & Sabatini, D. D. Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity. Proc. Natl Acad. Sci. USA75, 5071–5075 (1978). Showed that enveloped viruses can be used as tools to study the generation and maintenance of epithelial polarity. CASPubMed Google Scholar
Rodriguez-Boulan, E. & Pendergast, M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell20, 45–54 (1980). CASPubMed Google Scholar
Griffiths, G. & Simons, K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science234, 438–443 (1986). CASPubMed Google Scholar
Matlin, K. S. & Simons, K. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J. Cell Biol.99, 2131–2139 (1984). CASPubMed Google Scholar
Misek, D. E., Bard, E. & Rodriguez-Boulan, E. Biogenesis of epithelial cell polarity: intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein. Cell39, 537–546 (1984). CASPubMed Google Scholar
Rindler, M. J., Ivanov, I. E., Plesken, H., Rodriguez-Boulan, E. & Sabatini, D. D. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin–Darby canine kidney cells. J. Cell Biol.98, 1304–1319 (1984). CASPubMed Google Scholar
Rodriguez-Boulan, E. & Nelson, W. J. Morphogenesis of the polarized epithelial cell phenotype. Science245, 718–725 (1989). CASPubMed Google Scholar
Simons, K. & Wandinger-Ness, A. Polarized sorting in epithelia. Cell62, 207–210 (1990). CASPubMed Google Scholar
Tuma, P. L. & Hubbard, A. L. Transcytosis: crossing cellular barriers. Physiol. Rev.83, 871–932 (2003). CASPubMed Google Scholar
Rodriguez-Boulan, E. & Powell, S. K. Polarity of epithelial and neuronal cells. Annu. Rev. Cell Biol.8, 395–427 (1992). CASPubMed Google Scholar
Matter, K. & Mellman, I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr. Opin. Cell Biol.6, 545–554 (1994). CASPubMed Google Scholar
Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev.79, 73–98 (1999). CASPubMed Google Scholar
Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol.5, 287–293 (2003). CASPubMed Google Scholar
Schock, F. & Perrimon, N. Molecular mechanisms of epithelial morphogenesis. Annu. Rev. Cell Dev. Biol.18, 463–493 (2002). CASPubMed Google Scholar
Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol.167, 531–543 (2004). CASPubMedPubMed Central Google Scholar
Brown, P. S. et al. Definition of distinct compartments in polarized Madin–Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic1, 124–140 (2000). CASPubMed Google Scholar
Polishchuk, R., Di Pentima, A. & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nature Cell Biol.6, 297–307 (2004). CASPubMed Google Scholar
Lisanti, M., Sargiacomo, M., Graeve, L., Saltiel, A. & Rodriguez-Boulan, E. Polarized apical distribution of glycosyl phosphatidylinositol anchored proteins in a renal epithelial line. Proc. Natl Acad. Sci. USA85, 9557–9561 (1988). First indication that a lipid (GPI) contributes to apical targeting. CASPubMedPubMed Central Google Scholar
Lisanti, M., Caras, I. P., Davitz, M. A. & Rodriguez-Boulan, E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol.109, 2145–2156 (1989). CASPubMed Google Scholar
Brown, D. A., Crise, B. & Rose, J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science245, 1499–1501 (1989). CASPubMed Google Scholar
Scheiffele, P., Peranen, J. & Simons, K. _N_-glycans as apical sorting signals in epithelial cells. Nature378, 96–98 (1995). First demonstration ofN-glycans as apical sorting signals. CASPubMed Google Scholar
Yeaman, C. et al. The _O_-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol.139, 929–940 (1997). First indication thatO-glycans function as an apical targeting mechanism. CASPubMedPubMed Central Google Scholar
Alfalah, M. et al. _O_-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr. Biol.9, 593–596 (1999). CASPubMed Google Scholar
Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol.9, 291–294 (1999). CASPubMed Google Scholar
Gut, A. et al. Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J.17, 1919–1929 (1998). CASPubMedPubMed Central Google Scholar
Fiedler, K. & Simons, K. The role of _N_-glycans in the secretory pathway. Cell81, 309–312 (1995). CASPubMed Google Scholar
Marzolo, M. P., Bull, P. & Gonzalez, A. Apical sorting of hepatitis B surface antigen (HBsAg) is independent of N-glycosylation and glycosylphosphatidylinositol-anchored protein segregation. Proc. Natl Acad. Sci. USA94, 1834–1839 (1997). CASPubMedPubMed Central Google Scholar
Bravo-Zehnder, M. et al. Apical sorting of a voltage- and Ca2+-activated K+ channel α- subunit in Madin–Darby canine kidney cells is independent of _N_-glycosylation. Proc. Natl Acad. Sci. USA97, 13114–13119 (2000). CASPubMedPubMed Central Google Scholar
Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell97, 877–887 (1999). CASPubMed Google Scholar
Takeda, T., Yamazaki, H. & Farquhar, M. G. Identification of an apical sorting determinant in the cytoplasmic tail of megalin. Am. J. Physiol. Cell Physiol.284, C1105–C1113 (2003). CASPubMed Google Scholar
Marzolo, M. P. et al. Differential distribution of low-density lipoprotein-receptor-related protein (LRP) and megalin in polarized epithelial cells is determined by their cytoplasmic domains. Traffic4, 273–288 (2003). CASPubMed Google Scholar
Altschuler, Y., Hodson, C. & Milgram, S. L. The apical compartment: trafficking pathways, regulators and scaffolding proteins. Curr. Opin. Cell Biol.15, 423–429 (2003). CASPubMed Google Scholar
Marmorstein, A. D. et al. Saturation of, and competition for entry into, the apical secretory pathway. Proc. Natl Acad. Sci. USA97, 3248–3253 (2000). CASPubMedPubMed Central Google Scholar
Fullekrug, J., Scheiffele, P. & Simons, K. VIP-36 localisation to the early secretory pathway. J. Cell Sci.112, 2813–2821 (1999). CASPubMed Google Scholar
van Meer, G. & Simons, K. Lipid polarity and sorting in epithelial cells. J. Cell Biochem.36, 51–58 (1988). The concept of lipid rafts was proposed. CASPubMed Google Scholar
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature387, 569–572 (1997). CASPubMed Google Scholar
Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol.167, 699–709 (2004). An exciting observation that throws light on the role of protein oligomerization in promoting apical targeting. CASPubMedPubMed Central Google Scholar
Benting, J. H., Rietveld, A. G. & Simons, K. _N_-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin–Darby canine kidney cells. J. Cell Biol.146, 313–320 (1999). CASPubMedPubMed Central Google Scholar
Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell116, 577–589 (2004). CASPubMed Google Scholar
Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol.120, 353–358 (1993). Initial proposal that a clustering event might be involved in apical targeting of GPI-anchored proteins. CASPubMed Google Scholar
Mayor, S., Rothenberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science264, 1948–1951 (1994). CASPubMed Google Scholar
Verkade, P., Harder, T., Lafont, F. & Simons, K. Induction of caveolae in the apical plasma membrane of Madin–Darby canine kidney cells. J. Cell Biol.148, 727–739 (2000). CASPubMedPubMed Central Google Scholar
Lisanti, M. P., Le Bivic, A., Saltiel, A. & Rodriguez-Boulan, E. Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: a highly conserved feature of the polarized epithelial cell phenotype. J. Memb. Biol.268, 155–167 (1990). Google Scholar
Le Bivic, A., Garcia, M. & Rodriguez-Boulan, E. Ricin resistant Madin–Darby canine kidney cells missort a major endogenous apical sialoglycoprotein. J. Biol. Chem.268, 6909–6916 (1993). CASPubMed Google Scholar
Puertollano, R., Martinez-Menarguez, J. A., Batista, A., Ballesta, J. & Alonso, M. A. An intact dilysine-like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus hemagglutinin cargo protein in epithelial Madin–Darby canine kidney cells. Mol. Biol. Cell12, 1869–1883 (2001). CASPubMedPubMed Central Google Scholar
Mostov, K. E., Kops, A. B. & Deitcher, D. L. Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell47, 359–364 (1986). The first demonstration that basolateral sorting information exists in the cytoplasmic domain. CASPubMed Google Scholar
Casanova, J. E., Apodaca, G. & Mostov, K. E. An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell66, 65–75 (1991). Identification of one of the first basolateral signals. CASPubMed Google Scholar
Hunziker, W., Harter, C., Matter, K. & Mellman, I. Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell66, 907–920 (1991). Identification of one of the first basolateral signals. CASPubMed Google Scholar
Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: The cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell71, 741–753 (1992). CASPubMed Google Scholar
Brewer, C. B. & Roth, M. G. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza viral hemagglutin. J. Cell Biol.114, 413–421 (1991) Showed dual importance of tyrosine signals in endocytosis and basolateral targeting. CASPubMed Google Scholar
Le Bivic, A. et al. An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells. J. Cell Biol.115, 607–618 (1991). CASPubMed Google Scholar
Hunziker, W. & Fumey, C. A di-leucine motif mediates endocytosis and basolateral sorting of macrophage IgG Fc receptors in MDCK cells. EMBO J.13, 2963–2969 (1994). CASPubMedPubMed Central Google Scholar
Muth, T. R. & Caplan, M. J. Transport protein trafficking in polarized cells. Annu. Rev. Cell Dev. Biol.19, 333–366 (2003). CASPubMed Google Scholar
Wehrle-Haller, B. & Imhof, B. A. Stem cell factor presentation to c-Kit. Identification of a basolateral targeting domain. J. Biol. Chem.276, 12667–12674 (2001). CASPubMed Google Scholar
Koivisto, U. M., Hubbard, A. L. & Mellman, I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell105, 575–585 (2001). CASPubMed Google Scholar
Nelson, W. J. & Veshnock, P. J. Ankyrin binding to (Na+, K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature328, 533–536 (1987). Demonstration of an alternative mechanism for basolateral localization: immobilization by the membrane cytoskeleton. CASPubMed Google Scholar
Pimplikar, S. W., Ikonen, E. & Simons, K. Basolateral protein transport in streptolysin O-permeabilized MDCK cells. J. Cell Biol.125, 1025–1035 (1994). CASPubMed Google Scholar
Musch, A., Xu, H., Shields, D. & Rodriguez-Boulan, E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J. Cell Biol.133, 543–558 (1996). CASPubMed Google Scholar
Soza, A. et al. Sorting competition with membrane-permeable peptides in intact epithelial cells revealed discrimination of transmembrane proteins not only at the _trans_-Golgi network but also at pre-Golgi stages. J. Biol. Chem.279, 17376–17383 (2004). CASPubMed Google Scholar
Skibbens, J. E., Roth, M. G. & Matlin, K. S. Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and non polar fibroblasts. J. Cell Biol.108, 821–832 (1989). First demonstration that an apical transmembrane protein might be associated with lipid rafts. CASPubMed Google Scholar
Yoshimori, T., Keller, P., Roth, M. G. & Simons, K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol.133, 247–256 (1996). CASPubMed Google Scholar
Matter, K., Whitney, J. A., Yamamoto, E. M. & Mellman, I. Common signals control low density lipoprotein receptor sorting in endosomes and in the Golgi complex of MDCK cells. Cell74, 1053–1064 (1993). Showed common signals that control sorting in endosomes and the Golgi complex. CASPubMed Google Scholar
Aroeti, B. & Mostov, K. E. Polarized sorting of the polymeric immunoglobulin receptor in the exocytic and endocytic pathway is controlled by the same amino acids. EMBO J.13, 2297–2304 (1994). CASPubMedPubMed Central Google Scholar
Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nature Rev. Mol. Cell Biol.4, 409–414 (2003). CAS Google Scholar
Folsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell99, 189–198 (1999). Reports the characterization of an epithelial adaptor for basolateral sorting signals. Provides a review of the basolateral signal subfield. CASPubMed Google Scholar
Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol.4, 154–159 (2002). CASPubMed Google Scholar
Ohno, H. et al. Mu1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett.4, 215–220 (1999). Google Scholar
Gan, Y., McGraw, T. E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol.4, 605–609 (2002). Shows that two different forms of the AP1 adaptor localize to different organelles and that AP1B controls basolateral sorting in endosomes. CASPubMed Google Scholar
Folsch, H., Pypaert, M., Maday, S., Pelletier, L. & Mellman, I. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J. Cell Biol.163, 351–362 (2003). PubMedPubMed Central Google Scholar
Futter, C. E., Connolly, C. N., Cutler, D. F. & Hopkins, C. R. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem.270, 10999–11003 (1995). CASPubMed Google Scholar
Orzech, E., Cohen, S., Weiss, A. & Aroeti, B. Interactions between the exocytic and endocytic pathways in polarized Madin–Darby canine kidney cells. J. Biol. Chem.275, 15207–15219 (2000). CASPubMed Google Scholar
Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell114, 299–310 (2003). CASPubMed Google Scholar
Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The δ subunit of AP-3 is required for efficient transport of VSV-G from the _trans_-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA99, 6755–6760 (2002). CASPubMedPubMed Central Google Scholar
Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin–γ-adaptin-coated domains on endosomal tubules. J. Cell Biol.141, 611–623 (1998). CASPubMedPubMed Central Google Scholar
Musch, A. Microtubule organization and function in epithelial cells. Traffic5, 1–9 (2004). PubMed Google Scholar
Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol.4, E236–E242 (2002). CASPubMed Google Scholar
Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol.143, 1485–1503 (1998). CASPubMedPubMed Central Google Scholar
Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of _trans_-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci.112, 21–33 (1999). CASPubMed Google Scholar
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol.2, 125–127 (2000). CASPubMed Google Scholar
Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol3, 140–149 (2001). CASPubMed Google Scholar
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol.5, 126–136 (2003). Reports live-cell-imaging studies that show the relocation of exocytosis sites when MDCK cells polarize. Basolateral exocytosis localizes to the junctional area. CASPubMed Google Scholar
Jacob, R. & Naim, H. Y. Apical membrane proteins are transported in distinct vesicular carriers. Curr. Biol.11, 1444–1450 (2001). CASPubMed Google Scholar
Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol.155, 77–88 (2001). CASPubMedPubMed Central Google Scholar
Stammes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol.14, 428–433 (2002). Google Scholar
Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. Cdc42 regulates the exit of apical and basolateral proteins from the _trans_-Golgi network. EMBO J.20, 2171–2179 (2001). CASPubMedPubMed Central Google Scholar
Durrbach, A., Raposo, G., Tenza, D., Louvard, D. & Coudrier, E. Truncated brush border myosin I affects membrane traffic in polarized epithelial cells. Traffic1, 411–424 (2000). CASPubMed Google Scholar
Sheff, D. R., Kroschewski, R. & Mellman, I. Actin dependence of polarized receptor recycling in Madin–Darby canine kidney cell endosomes. Mol. Biol. Cell13, 262–275 (2002). CASPubMedPubMed Central Google Scholar
Hales, C. M., Vaerman, J. P. & Goldenring, J. R. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem.277, 50415–50421 (2002). CASPubMed Google Scholar
Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the _trans_-Golgi network. J. Cell Biol.138, 291–306 (1997). CASPubMedPubMed Central Google Scholar
Orth, J. D. & McNiven, M. A. Dynamin at the actin–membrane interface. Curr. Opin. Cell Biol.15, 31–39 (2003). CASPubMed Google Scholar
Galli, T. et al. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol. Biol. Cell9, 1437–1448 (1998). CASPubMedPubMed Central Google Scholar
Low, S. H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol.141, 1503–1513 (1998). CASPubMedPubMed Central Google Scholar
Low, S. H. et al. Differential localization of syntaxin isoforms in polarized Madin–Darby canine kidney cells. Mol. Biol. Cell7, 2007–2018 (1996). CASPubMedPubMed Central Google Scholar
Lafont, F. et al. Raft association of SNAP receptors acting in apical trafficking in Madin–Darby canine kidney cells. Proc. Natl Acad. Sci. USA96, 3734–3738 (1999). CASPubMedPubMed Central Google Scholar
Riento, K., Kauppi, M., Keranen, S. & Olkkonen, V. M. Munc18-2, a functional partner of syntaxin 3, controls apical membrane trafficking in epithelial cells. J. Biol. Chem.275, 13476–13483 (2000). CASPubMed Google Scholar
Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol.142, 1413–1427 (1998). CASPubMedPubMed Central Google Scholar
Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem.279, 3680–3684 (2004). CASPubMed Google Scholar
Thurmond, D. C. & Pessin, J. E. Discrimination of GLUT4 vesicle trafficking from fusion using a temperature-sensitive Munc18c mutant. EMBO J.19, 3565–3575 (2000). CASPubMedPubMed Central Google Scholar
Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell13, 158–168 (2002). CASPubMed Google Scholar
Lipschutz, J. H. & Mostov, K. E. Exocytosis: the many masters of the exocyst. Curr. Biol.12, R212–R214 (2002). CASPubMed Google Scholar
Grindstaff, K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal–lateral membrane in epithelial cells. Cell93, 731–740 (1998). Reports a key role for exocyst in basolateral targeting. CASPubMed Google Scholar
Yeaman, C., Grindstaff, K., Wright, J. & Nelson, W. Sec 6/8 complexes on _trans_-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J. Cell Biol.155, 593–604 (2001). CASPubMedPubMed Central Google Scholar
Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from _trans_-Golgi network. Nature Cell Biol.6, 106–112 (2004). CASPubMed Google Scholar
Moskalenko, S. et al. The exocyst is a Ral effector complex. Nature Cell Biol.4, 66–72 (2002). CASPubMed Google Scholar
Ang, A., Fölsch, H., Koivisto, U., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin–Darby canine kidney cells. J. Cell Biol.163, 339–350 (2003). CASPubMedPubMed Central Google Scholar
Huber, L. A. et al. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol.123, 35–45 (1993). CASPubMed Google Scholar
Louvard, D. Apical membrane aminopeptidase appears at site of cell–cell contact in cultured kidney epithelial cells. Proc. Natl Acad. Sci. USA77, 4132–4136 (1980). CASPubMedPubMed Central Google Scholar
Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol.1, 8–13 (1999). CASPubMed Google Scholar
Cohen, D., Musch, A. & Rodriguez-Boulan, E. Selective control of basolateral membrane protein polarity by cdc42. Traffic2, 556–564 (2001). CASPubMed Google Scholar
Gonzalez-Mariscal, L., Chavez de Ramirez, B. & Cereijido, M. Tight-junction formation in cultured epithelial cells (MDCK). J. Membr. Biol.86, 113–125 (1985). CASPubMed Google Scholar
Ojakian, G. K., Nelson, W. J. & Beck, K. A. Mechanisms for de novo biogenesis of an apical membrane compartment in groups of simple epithelial cells surrounded by extracellular matrix. J. Cell Sci.110, 2781–2794 (1997). CASPubMed Google Scholar
Vega Salas, D. E., Salas, P. J. & Rodriguez-Boulan, E. Modulation of the expression of an apical plasma membrane protein of Madin–Darby canine kidney epithelial cells: cell–cell interactions control the appearance of a novel intracellular storage compartment. J. Cell Biol.104, 1249–1259 (1987). CASPubMed Google Scholar
Low, S. H. et al. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol. Biol. Cell11, 3045–3060 (2000). CASPubMedPubMed Central Google Scholar
Cohen, D., Brennwald, P., Rodriguez-Boulan, E. & Musch, A. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J. Cell Biol.164, 717–728 (2004). A kinase for microtubule-associated proteins is a key organizer of microtubules and lumen polarity in epithelial cells. CASPubMedPubMed Central Google Scholar
Vega-Salas, D. E., Salas, P. J. I. & Rodriguez-Boulan, E. Exocytosis of vacuolar apical compartment (VAC): a cell–cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J. Cell Biol.107, 1717–1728 (1988). CASPubMed Google Scholar
Amerongen, H. M., Mack, J. A., Wilson, J. M. & Neutra, M. R. Membrane domains of intestinal epithelial cells: distribution of Na+,K+ ATPase and the membrane skeleton in adult rat intestine during fetal development and after epithelial isolation. J. Cell Biol.109, 2129–2138 (1989). CASPubMed Google Scholar
Anderson, J. M., Van Itallie, C. M. & Fanning, A. S. Setting up a selective barrier at the apical junction complex. Curr. Opin. Cell Biol.16, 140–145 (2004). CASPubMed Google Scholar
Benton, R., Palacios, I. M. & Johnston, D. S. Drosophila 14-3-3/PAR5 is an essential mediator of PAR-1 function in axis formation. Dev. Cell3, 659–671 (2002). CASPubMed Google Scholar
Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol.14, 1425–1435 (2004). CASPubMed Google Scholar
Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell115, 691–704 (2003). CASPubMed Google Scholar
Hurd, T. W. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol.13, 2082–2090 (2003). CASPubMed Google Scholar
Macara, I. G. Par proteins: partners in polarization. Curr. Biol.14, R160–R162 (2004). CASPubMed Google Scholar
Baas, A. et al. Complete polarization of single intestinal cells upon activation of LKB1 by Strad. Cell116, 457–466 (2004). CASPubMed Google Scholar
Cohen, D., Rodriguez-Boulan, E. & Musch, A. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl Acad. Sci. USA101, 13792–13797 (2004). CASPubMedPubMed Central Google Scholar
Sargiacomo, M., Lisanti, M., Graeve, L., Le Bivic, A. & Rodriguez-Boulan, E. Integral and peripheral protein compositions of the apical and basolateral membrane domains in MDCK cells. J. Memb. Biol.107, 277–286 (1989). CAS Google Scholar
Le Bivic, A., Real, F. X. & Rodriguez-Boulan, E. Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line. Proc. Natl Acad. Sci. USA86, 9313–9317 (1989). CASPubMedPubMed Central Google Scholar
Gravotta, D., Adesnik, M. & Sabatini, D. D. Transport of influenza HA from the _trans_-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral membranes: energy dependence and involvement of GTP-binding proteins. J. Cell Biol.111, 2893–2908 (1990). CASPubMed Google Scholar
Pimplikar, S. W. & Simons, K. Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madin–Darby canine kidney cells. J. Biol. Chem.269, 19054–19059 (1994). CASPubMed Google Scholar
Marmorstein, A. D. et al. Apical polarity of N-CAM and EMMPRIN in retinal pigment epithelium resulting from suppression of basolateral signal recognition. J. Cell Biol.142, 697–710 (1998). CASPubMedPubMed Central Google Scholar
Roush, D. L., Gottardi, C. J., Naim, H. Y., Roth, M. G. & Caplan, M. J. Tyrosine-based membrane protein sorting signals are differentially interpreted by polarized Madin–Darby canine kidney and LLC-PK1 epithelial cells. J. Biol. Chem.273, 26862–26869 (1998). CASPubMed Google Scholar
Casanova, J. E., Mishumi, Y., Ikehara, Y., Hubbard, A. L. & Mostov, K. E. Direct apical sorting of rat liver dipeptidylpeptidase IV expressed in Madin–Darby kidney cells. J. Biol. Chem.266, 24428–24432 (1991). CASPubMed Google Scholar
Bonilha, V. L., Marmorstein, A. D., Cohen-Gould, L. & Rodriguez-Boulan, E. Apical sorting of hemagglutinin by transcytosis in retinal pigment epithelium. J. Cell Sci.110, 1717–1727 (1997). CASPubMed Google Scholar
Zurzolo, C., Le Bivic, A., Quaroni, A., Nitsch, L. & Rodriguez-Boulan, E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J.11, 2337–2344 (1992). CASPubMedPubMed Central Google Scholar
Bartles, J. R., Feracci, H. M., Stieger, B. & Hubbard, A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J. Cell Biol.105, 1241–1251 (1987). Identifies transcytosis as a primary mode of delivery of apical proteins in liver cells. CASPubMed Google Scholar
Kipp, H. & Arias, I. M. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J. Biol. Chem.275, 15917–15925 (2000). CASPubMed Google Scholar
Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid enriched membrane subdomains during transport to the apical cell surface. Cell68, 533–544 (1992). Showed that GPI-anchored proteins become lipid-raft-associated as they move into the Golgi complex. CASPubMed Google Scholar
Shvartsman, D. E., Kotler, M., Tall, R. D., Roth, M. G. & Henis, Y. I. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J. Cell Biol.163, 879–888 (2003). Reports the biophysical characterization of different types of lipid rafts and their possible role in apical targeting. CASPubMedPubMed Central Google Scholar
Zurzolo, C., van't Hof, W., van Meer, G. & Rodriguez-Boulan, E. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol anchored proteins in epithelial cells. EMBO J.13, 42–53 (1994). CASPubMedPubMed Central Google Scholar
Mays, R. W. et al. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J. Cell Biol.130, 1105–1115 (1995). CASPubMed Google Scholar
Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol.140, 1357–1367 (1998). CASPubMedPubMed Central Google Scholar
van Meer, G., Stelzer, E. H., Wijnaendts-van-Resandt, R. W. & Simons, K. Sorting of sphingolipids in epithelial (Madin–Darby canine kidney) cells. J. Cell Biol.105, 1623–1635 (1987). CASPubMed Google Scholar
van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell87, 507–517 (1996). CASPubMed Google Scholar
Nabi, I. R., Le Bivic, A., Fambrough, D. & Rodriguez-Boulan, E. An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes. J. Cell Biol.115, 1573–1584 (1991). CASPubMed Google Scholar
Harter, C. & Mellman, I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol.117, 311–325 (1992). CASPubMed Google Scholar
Apodaca, G., Katz, L. A. & Mostov, K. E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol.125, 67–86 (1994). CASPubMed Google Scholar
Bruns, J., Ellis, M., Jeromin, A. & Weisz, O. A. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized MDCK cells. J. Biol. Chem.277, 2012–2018 (2002). CASPubMed Google Scholar
Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol.6, 763–769 (2004). CASPubMed Google Scholar
Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the _trans_-Golgi network. J. Cell Biol.165, 781–788 (2004). CASPubMedPubMed Central Google Scholar
Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin–Darby canine kidney cells. Mol. Biol. Cell10, 47–61 (1999). CASPubMedPubMed Central Google Scholar
Yeaman, C., Grindstaff, K. K. & Nelson, W. J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci.117, 559–570 (2004). CASPubMed Google Scholar
Bacallao, R. et al. The subcellular organization of Madin–Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol.109, 2817–2832 (1989). CASPubMed Google Scholar