The molecular repertoire of the 'almighty' stem cell (original) (raw)
Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002). CASPubMed Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). ArticleCASPubMed Google Scholar
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). ArticleCASPubMed Google Scholar
Labosky, P. A., Barlow, D. P. & Hogan, B. L. Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba. Found. Symp.182, 157–168; discussion 168–178 (1994). CASPubMed Google Scholar
Pain, B. et al. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development122, 2339–2348 (1996). CASPubMed Google Scholar
Thomson, J. A. & Marshall, V. S. Primate embryonic stem cells. Curr. Top. Dev. Biol.38, 133–165 (1998). CASPubMed Google Scholar
Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood81, 2844–2853 (1993). CASPubMed Google Scholar
Ivanova, N. B. et al. A stem cell molecular signature. Science298, 601–604 (2002). CASPubMed Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). References 8 and 9 are the first analyses of global gene-expression profiling of multiple adult and embryonic stem-cell populations to identify conserved stem-cell genes. CASPubMed Google Scholar
Fortunel, N. O. et al. Comment on “'Stemness': transcriptional profiling of embryonic and adult stem cells” and “A stem cell molecular signature”. Science302, 393; author reply 393 (2003). Similar to references 8 and 9, reports another global gene-expression analysis of multiple adult and embryonic stem-cell populations, and compares the stem-cell genes identified in references 8–10 pointing out the discordance of these studies. CASPubMed Google Scholar
Abeyta, M. J. et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet.13, 601–608 (2004). This extensive work identifies genes expressed in multiple human ESC lines as well as comparing these genes to mouse ES and adult stem-cell profiles. CASPubMed Google Scholar
Sato, N. et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol.260, 404–413 (2003). CASPubMed Google Scholar
Sperger, J. M. et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl Acad. Sci. USA100, 13350–13355 (2003). CASPubMedPubMed Central Google Scholar
Brandenberger, R. et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotechnol.22, 707–716 (2004). Google Scholar
Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev.11, 774–785 (1997). CASPubMed Google Scholar
Terskikh, A. V., Miyamoto, T., Chang, C., Diatchenko, L. & Weissman, I. L. Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood102, 94–101 (2003). CASPubMed Google Scholar
Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood101, 383–389 (2003). CASPubMed Google Scholar
Ye, M. et al. Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. Immunity19, 689–699 (2003). CASPubMed Google Scholar
Arney, K. L. & Fisher, A. G. Epigenetic aspects of differentiation. J. Cell Sci.117, 4355–4363 (2004). CASPubMed Google Scholar
Tanaka, T. S. et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res.12, 1921–1928 (2002). CASPubMedPubMed Central Google Scholar
Sharov, A. A. et al. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol.1, E74 (2003). PubMedPubMed Central Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998). CASPubMed Google Scholar
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003). CASPubMed Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCASPubMed Google Scholar
Rao, M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev. Biol.275, 269–286 (2004). CASPubMed Google Scholar
Niwa, H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct. Funct.26, 137–148 (2001). An excellent review on OCT4 signalling in ESCs that describes the achievements and the difficulties of confirming gene function in stem cells. CASPubMed Google Scholar
Chambers, I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells6, 386–391 (2004). CASPubMed Google Scholar
Richards, M., Tan, S. P., Tan, J. H., Chan, W. K. & Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells22, 51–64 (2004). CASPubMed Google Scholar
Bhattacharya, B. et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood103, 2956–2964 (2004). CASPubMed Google Scholar
Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115, 281–292 (2003). CASPubMed Google Scholar
Xu, R. H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnol.20, 1261–1264 (2002). CAS Google Scholar
Xu, R. H. et al. Basic FGF and supression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods2, 185–190 (2005). CASPubMed Google Scholar
Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science273, 242–245 (1996). CASPubMed Google Scholar
Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell66, 649–661 (1991). CASPubMed Google Scholar
Begley, C. G. et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor δ-chain diversity region and results in a previously unreported fusion transcript. Proc. Natl Acad. Sci. USA86, 2031–2035 (1989). CASPubMedPubMed Central Google Scholar
Finger, L. R. et al. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc. Natl Acad. Sci. USA86, 5039–5043 (1989). CASPubMedPubMed Central Google Scholar
Royer-Pokora, B., Loos, U. & Ludwig, W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene6, 1887–1893 (1991). CASPubMed Google Scholar
Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med.6, 1278–1281 (2000). CASPubMed Google Scholar
Lecuyer, E. & Hoang, T. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp. Hematol.32, 11–24 (2004). CASPubMed Google Scholar
Yamada, Y. et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl Acad. Sci. USA95, 3890–3895 (1998). CASPubMedPubMed Central Google Scholar
Varnum-Finney, B., Brashem-Stein, C. & Bernstein, I. D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood101, 1784–1789 (2003). CASPubMed Google Scholar
Karanu, F. N. et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood97, 1960–1967 (2001). CASPubMed Google Scholar
Ohishi, K., Varnum-Finney, B. & Bernstein, I. D. Delta-1 enhances marrow and thymus repopulating ability of human CD34+CD38− cord blood cells. J. Clin. Invest.110, 1165–1174 (2002). CASPubMedPubMed Central Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). CASPubMed Google Scholar
Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl Acad. Sci. USA91, 12223–12227 (1994). CASPubMedPubMed Central Google Scholar
Lessard, J., Baban, S. & Sauvageau, G. Stage-specific expression of polycomb group genes in human bone marrow cells. Blood91, 1216–1224 (1998). CASPubMed Google Scholar
Austin, T. W., Solar, G. P., Ziegler, F. C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood89, 3624–3635 (1997). CASPubMed Google Scholar
Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp. Hematol.29, 1125–1134 (2001). CASPubMed Google Scholar
Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell109, 39–45 (2002). CASPubMed Google Scholar
Buske, C. et al. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood100, 862–868 (2002). CASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). CASPubMed Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003). CASPubMed Google Scholar
Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol.2, 172–180 (2001). CAS Google Scholar
Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science287, 1804–1808 (2000). CASPubMed Google Scholar
Phillips, R. L. et al. The genetic program of hematopoietic stem cells. Science288, 1635–1640 (2000). One of the first attempts to generate a global differential gene-expression profile of a stem-cell population compared to its progeny using subtractive hybridization of cDNA libraries. CASPubMed Google Scholar
Terskikh, A. V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl Acad. Sci. USA98, 7934–7939 (2001). CASPubMedPubMed Central Google Scholar
Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118, 149–161 (2004). CASPubMed Google Scholar
Li, L. & Akashi, K. Unraveling the molecular components and genetic blueprints of stem cells. Biotechniques35, 1233–1239 (2003). CASPubMed Google Scholar
Rebel, V. I., Miller, C. L., Eaves, C. J. & Lansdorp, P. M. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood87, 3500–3507 (1996). CASPubMed Google Scholar
Park, I. K. et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood99, 488–498 (2002). CASPubMed Google Scholar
Liu, H. & Verfaillie, C. M. Myeloid-lymphoid initiating cells (ML-IC) are highly enriched in the rhodamine-c-kit+CD33−CD38− fraction of umbilical cord CD34+ cells. Exp. Hematol.30, 582–589 (2002). CASPubMed Google Scholar
Hess, D. A. et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood104, 1648–1655 (2004). CASPubMed Google Scholar
Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97, 14720–14725 (2000). CASPubMedPubMed Central Google Scholar
Geschwind, D. H. et al. A genetic analysis of neural progenitor differentiation. Neuron29, 325–339 (2001). CASPubMed Google Scholar
Karsten, S. L. et al. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev. Biol.261, 165–182 (2003). CASPubMed Google Scholar
Wright, L. S. et al. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J. Neurochem.86, 179–195 (2003). CASPubMed Google Scholar
Livesey, F. J., Young, T. L. & Cepko, C. L. An analysis of the gene expression program of mammalian neural progenitor cells. Proc. Natl Acad. Sci. USA101, 1374–1379 (2004). CASPubMedPubMed Central Google Scholar
Luo, Y. et al. Microarray analysis of selected genes in neural stem and progenitor cells. J. Neurochem.83, 1481–1497 (2002). CASPubMed Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). Identifies two spatially distinct stem-cell populations in the bulge-cell pool and characterizes their expression profile,in vivoandin vitropotential and niche. CASPubMed Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol.22, 411–417 (2004). CAS Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). CASPubMed Google Scholar
Mills, J. C., Andersson, N., Hong, C. V., Stappenbeck, T. S. & Gordon, J. I. Molecular characterization of mouse gastric epithelial progenitor cells. Proc. Natl Acad. Sci. USA99, 14819–14824 (2002). CASPubMedPubMed Central Google Scholar
Stappenbeck, T. S., Mills, J. C. & Gordon, J. I. Molecular features of adult mouse small intestinal epithelial progenitors. Proc. Natl Acad. Sci. USA100, 1004–1009 (2003). CASPubMedPubMed Central Google Scholar
Gilboa, L. & Lehmann, R. How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development131, 4895–4905 (2004). CASPubMed Google Scholar
Yamashita, Y. M., Fuller, M. T. & Jones, D. L. Signaling in stem cell niches: lessons from the Drosophila germline. J. Cell Sci.118, 665–672 (2005). CASPubMed Google Scholar
Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science290, 328–330 (2000). CASPubMed Google Scholar
Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science294, 2546–2549 (2001). CASPubMed Google Scholar
Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science294, 2542–2545 (2001). CASPubMed Google Scholar
Gonczy, P. & DiNardo, S. The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development122, 2437–24347 (1996). CASPubMed Google Scholar
Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science296, 1855–1857 (2002). CASPubMed Google Scholar
Tran, J., Brenner, T. J. & DiNardo, S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature407, 754–757 (2000). CASPubMed Google Scholar
Deng, W. & Lin, H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol.189, 79–94 (1997). CASPubMed Google Scholar
Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature407, 750–754 (2000). CASPubMed Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). CASPubMed Google Scholar
Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304, 1338–1340 (2004). CASPubMed Google Scholar
Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev.13, 543–550 (2003). CASPubMed Google Scholar
Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature416, 854–860 (2002). CASPubMed Google Scholar
Driessen, R. L., Johnston, H. M. & Nilsson, S. K. Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp. Hematol.31, 1284–1291 (2003). CASPubMed Google Scholar
Hackney, J. A. et al. A molecular profile of a hematopoietic stem cell niche. Proc. Natl Acad. Sci. USA99, 13061–13066 (2002). Provides a complementary analysis of gene expression in a stem-cell niche, specifically the haematopoietic stem-cell niche, as a means to understand the extrinsic signals that regulate stem-cell function. CASPubMedPubMed Central Google Scholar
Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science301, 1547–1550 (2003). CASPubMed Google Scholar
Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature434, 843–850 (2005). CASPubMed Google Scholar
Molofsky, A. V., Pardal, R. & Morrison, S. J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol.16, 700–707 (2004). CASPubMed Google Scholar
Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem.278, 32227–32235 (2003). CASPubMed Google Scholar
Zipori, D. The nature of stem cells: state rather than entity. Nature Rev. Genet.5, 873–878 (2004). A critical analysis of reported stem-cell gene-expression data that raises questions regarding the validity of the concept of conserved stem-cell genes. CASPubMed Google Scholar
Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19, 1720–1730 (1999). CASPubMedPubMed Central Google Scholar
Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell3, 137–147 (2002). CASPubMed Google Scholar
Lian, Z. et al. Genomic and proteomic analysis of the myeloid differentiation program. Blood98, 513–524 (2001). CASPubMed Google Scholar
He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet.5, 522–531 (2004). CASPubMed Google Scholar
Suh, M. R. et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol.270, 488–498 (2004). CASPubMed Google Scholar
Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science303, 83–86 (2004). CASPubMed Google Scholar
Pickart, M. A. et al. Functional genomics tools for the analysis of zebrafish pigment. Pigment Cell Res.17, 461–470 (2004). CASPubMed Google Scholar
Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet.26, 216–220 (2000). CASPubMed Google Scholar
Ekker, S. C. Morphants: a new systematic vertebrate functional genomics approach. Yeast17, 302–306 (2000). CASPubMed Google Scholar
Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol.243, 209–214 (2002). CASPubMed Google Scholar
Bargmann, C. I. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome Biol.2, REVIEWS1005 (2001). CASPubMedPubMed Central Google Scholar
Eckfeldt, C. E. et al. Functional analysis of hematopoietic stem cell gene expressin using zebrafish. PLoS Biol.3, e254 (2005). One of the first descriptions of global gene-expression profiling of a human stem-cell population coupled with high-throughput functional genomics screening using zebrafish. PubMedPubMed Central Google Scholar
Pomerantz, J. & Blau, H. M. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biol.6, 810–816 (2004). CASPubMed Google Scholar
Grove, J. E., Bruscia, E. & Krause, D. S. Plasticity of bone marrow-derived stem cells. Stem Cells22, 487–500 (2004). PubMed Google Scholar
Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell116, 639–648 (2004). CASPubMed Google Scholar
Camargo, F. D., Chambers, S. M. & Goodell, M. A. Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif.37, 55–65 (2004). CASPubMedPubMed Central Google Scholar
Verfaillie, C. M. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol.12, 502–508 (2002). CASPubMed Google Scholar
Khavari, P. A. Profiling epithelial stem cells. Nature Biotechnol.22, 393–394 (2004). CAS Google Scholar
Gronthos, S. et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci.116, 1827–1835 (2003). CASPubMed Google Scholar
Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100, 12313–12318 (2003). CASPubMedPubMed Central Google Scholar
Paku, S., Schnur, J., Nagy, P. & Thorgeirsson, S. S. Origin and structural evolution of the early proliferating oval cells in rat liver. Am. J. Pathol.158, 1313–1323 (2001). CASPubMedPubMed Central Google Scholar
Petkov, P. M. et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology39, 617–627 (2004). CASPubMed Google Scholar
Arai, M. et al. Gene expression profiles in liver regeneration with oval cell induction. Biochem. Biophys. Res. Comm.317, 370–376 (2004). CASPubMed Google Scholar
Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnol.22, 1115–1124 (2004). CAS Google Scholar
Bonner-Weir, S. et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr. Diabetes5, 16–22 (2004). PubMed Google Scholar
Hawke, T. J. & Garry, D. J. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol.91, 534–551 (2001). CASPubMed Google Scholar
de Rooij, D. G. & Grootegoed, J. A. Spermatogonial stem cells. Curr. Opin. Cell Biol.10, 694–701 (1998). CASPubMed Google Scholar