Critical nodes in signalling pathways: insights into insulin action (original) (raw)
Avruch, J. Insulin signal transduction through protein kinase cascades. Mol. Cell Biochem.182, 31–48 (1998). ArticleCASPubMed Google Scholar
Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell61, 203–212 (1990). CASPubMed Google Scholar
Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science283, 1544–1548 (1999). ArticleCASPubMed Google Scholar
Ueki, K., Kondo, T. & Kahn, C. R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell Biol.24, 5434–5446 (2004). ArticleCASPubMedPubMed Central Google Scholar
Emanuelli, B. et al. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-α in the adipose tissue of obese mice. J. Biol. Chem.276, 47944–47949 (2001). ArticleCASPubMed Google Scholar
Friedman, J. E. et al. Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am. J. Physiol.273, E1014–E1023 (1997). CASPubMed Google Scholar
Sun, X. J. et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature352, 73–77 (1991). ArticleCASPubMed Google Scholar
Sun, X. J. et al. Role of IRS-2 in insulin and cytokine signalling. Nature377, 173–177 (1995). ArticleCASPubMed Google Scholar
Lavan, B. E., Lane, W. S. & Lienhard, G. E. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem.272, 11439–11443 (1997). ArticleCASPubMed Google Scholar
Fantin, V. R. et al. Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. J. Biol. Chem.273, 10726–10732 (1998). ArticleCASPubMed Google Scholar
Cai, D., Dhe-Paganon, S., Melendez, P. A., Lee, J. & Shoelson, S. E. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J. Biol. Chem.278, 25323–25330 (2003). ArticleCASPubMed Google Scholar
Lehr, S. et al. Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Biochemistry39, 10898–10907 (2000). ArticleCASPubMed Google Scholar
Baumann, C. A. et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature407, 202–207 (2000). ArticleCASPubMed Google Scholar
Gustafson, T. A., He, W., Craparo, A., Schaub, C. D. & O'Neill, T. J. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol. Cell Biol.15, 2500–2508 (1995). ArticleCASPubMedPubMed Central Google Scholar
Virkamaki, A., Ueki, K. & Kahn, C. R. Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest.103, 931–943 (1999). ArticleCASPubMedPubMed Central Google Scholar
Myers, M. G. Jr et al. The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J. Biol. Chem.273, 26908–26914 (1998). ArticleCASPubMed Google Scholar
Algenstaedt, P., Antonetti, D. A., Yaffe, M. B. & Kahn, C. R. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart. J. Biol. Chem.272, 23696–23702 (1997). ArticleCASPubMed Google Scholar
Fei, Z. L., D'Ambrosio, C., Li, S., Surmacz, E. & Baserga, R. Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol. Cell Biol.15, 4232–4239 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zick, Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci. STKE2005, PE4 (2005). ArticlePubMed Google Scholar
Bouzakri, K. et al. Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes52, 1319–1325 (2003). ArticleCASPubMed Google Scholar
Harrington, L. S. et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol.166, 213–223 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miller, B. S. et al. Activation of cJun NH2-terminal kinase/stress-activated protein kinase by insulin. Biochemistry35, 8769–8775 (1996). ArticleCASPubMed Google Scholar
Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Med.11, 183–190 (2005). ArticleCASPubMed Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002). ArticleCASPubMed Google Scholar
Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White, M. F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem.275, 9047–9054 (2000). An important paper that established the connection between Ser307 phosphorylation, JNK and insulin resistance. ArticleCASPubMed Google Scholar
Craparo, A., Freund, R. & Gustafson, T. A. 14-3-3 (ε) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J. Biol. Chem.272, 11663–11669 (1997). ArticleCASPubMed Google Scholar
Bard-Chapeau, E. A. et al. Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nature Med.11, 567–571 (2005). ArticleCASPubMed Google Scholar
Hirashima, Y. et al. Insulin down-regulates insulin receptor substrate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway. J. Endocrinol.179, 253–266 (2003). ArticleCASPubMed Google Scholar
Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M. F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem.277, 42394–42398 (2002). ArticleCASPubMed Google Scholar
Shimomura, I. et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell6, 77–86 (2000). ArticleCASPubMed Google Scholar
Sesti, G. et al. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J.15, 2099–2111 (2001). ArticleCASPubMed Google Scholar
Araki, E. et al. Alternative pathway of insulin signaling in targeted disruption of the IRS-1 gene. Nature372, 186–190 (1994). ArticleCASPubMed Google Scholar
Kubota, N. et al. Insulin receptor substrate 2 plays a crucial role in β cells and the hypothalamus. J. Clin. Invest.114, 917–927 (2004). ArticleCASPubMedPubMed Central Google Scholar
Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature391, 900–904 (1998). ArticleCASPubMed Google Scholar
Tseng, Y. H. et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nature Cell Biol.7, 601–611 (2005). ArticleCASPubMed Google Scholar
Miki, H. et al. Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol. Cell Biol.21, 2521–2532 (2001). ArticleCASPubMedPubMed Central Google Scholar
Huang, C., Thirone, A. C., Huang, X. & Klip, A. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J. Biol. Chem.280, 19426–19435 (2005). ArticleCASPubMed Google Scholar
Taniguchi, C. M., Ueki, K. & Kahn, R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J. Clin. Invest.115, 718–727 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sun, X. J. et al. The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action. Mol. Endocrinol.11, 251–262 (1997). ArticleCASPubMed Google Scholar
Miura, A. et al. Insulin substrates 1 and 2 are corequired for activation of atypical protein kinase C and Cbl-dependent phosphatidylinositol 3-kinase during insulin action in immortalized brown adipocytes. Biochemistry43, 15503–15509 (2004). ArticleCASPubMed Google Scholar
Tsuruzoe, K., Emkey, R., Kriauciunas, K. M., Ueki, K. & Kahn, C. R. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol. Cell Biol.21, 26–38 (2001). ArticleCASPubMedPubMed Central Google Scholar
Inoue, G., Cheatham, B., Emkey, R. & Kahn, C. R. Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J. Biol. Chem.273, 11548–11555 (1998). ArticleCASPubMed Google Scholar
Ogihara, T. et al. Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinositol 3-kinase in skeletal muscle cells. J. Biol. Chem.272, 12868–12873 (1997). ArticleCASPubMed Google Scholar
Sawka-Verhelle, D., Tartare-Deckert, S., White, M. F. & Van Obberghen, E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J. Biol. Chem.271, 5980–5983 (1996). ArticleCASPubMed Google Scholar
Myers, M. G. Jr et al. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl Acad. Sci. USA89, 10350–10354 (1992). ArticleCASPubMedPubMed Central Google Scholar
Cheatham, B. et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell Biol.14, 4902–4911 (1994). CASPubMedPubMed Central Google Scholar
Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol.7, 261–269 (1997). Describes the discovery of PDK1. ArticleCASPubMed Google Scholar
Le Good, J. A. et al. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science281, 2042–2045 (1998). ArticleCASPubMed Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCASPubMed Google Scholar
Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol.9, 125–128 (1999). ArticleCASPubMed Google Scholar
Wijesekara, N. et al. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell Biol.25, 1135–1145 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tang, X., Powelka, A. M., Soriano, N. A., Czech, M. P. & Guilherme, A. PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J. Biol. Chem.280, 22523–22529 (2005). ArticleCASPubMed Google Scholar
Sleeman, M. W. et al. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nature Med.11, 199–205 (2005). ArticleCASPubMed Google Scholar
Shepherd, P. R., Withers, D. J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J.333, 471–490 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yu, J. et al. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol. Cell Biol.18, 1379–1387 (1998). Helped to define the molecular and functional relationships between the regulatory and catalytic subunits of PI3K. ArticleCASPubMedPubMed Central Google Scholar
Asano, T. et al. p110β is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity. J. Biol. Chem.275, 17671–17676 (2000). ArticleCASPubMed Google Scholar
Tanti, J. F., Gremeaux, T., Van Obberghen, E. & Le Marchand-Brustel, Y. Insulin receptor substrate 1 is phosphorylated by the serine kinase activity of phosphatidylinositol 3-kinase. Biochem. J.304, 17–21 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tanti, J. F., Gremeaux, T., van Obberghen, E. & Le Marchand-Brustel, Y. Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J. Biol. Chem.269, 6051–6057 (1994). ArticleCASPubMed Google Scholar
Antonetti, D. A., Algenstaedt, P. & Kahn, C. R. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol. Cell Biol.16, 2195–2203 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ueki, K. et al. Increased insulin sensitivity in mice lacking p85β subunit of phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA99, 419–424 (2002). ArticleCASPubMed Google Scholar
Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 α subunit of phosphoinositide 3-kinase. Nature Genet.21, 230–235 (1999). The first description of the paradoxical negative regulation of insulin signalling by the regulatory subunit p85α. ArticleCASPubMed Google Scholar
Chen, D. et al. p50α/p55α phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. Mol. Cell Biol.24, 320–329 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 α. Nature Genet.26, 379–382 (2000). ArticleCASPubMed Google Scholar
Mauvais-Jarvis, F. et al. Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J. Clin. Invest.109, 141–149 (2002). ArticleCASPubMedPubMed Central Google Scholar
Barbour, L. A. et al. Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology145, 1144–1150 (2004). Shows that the physiologic upregulation of p85αin vivoinduces insulin resistance. ArticleCASPubMed Google Scholar
Bandyopadhyay, G. K., Yu, J. G., Ofrecio, J. & Olefsky, J. M. Increased p85/55/50 expression and decreased phosphatidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes54, 2351–2359 (2005). ArticleCASPubMed Google Scholar
Ueki, K., Algenstaedt, P., Mauvais-Jarvis, F. & Kahn, C. R. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85α regulatory subunit. Mol. Cell Biol.20, 8035–8046 (2000). ArticleCASPubMedPubMed Central Google Scholar
Luo, J., Field, S. J., Lee, J. Y., Engelman, J. A. & Cantley, L. C. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J. Cell Biol.170, 455–464 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ueki, K. et al. Positive and negative roles of p85 α and p85 β regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J. Biol. Chem.278, 48453–48466 (2003). The first published connection between the p85α regulatory subunit and JNK activation. ArticleCASPubMed Google Scholar
Carpenter, C. L. & Cantley, L. C. Phosphoinositide kinases. Curr. Opin. Cell Biol.8, 153–158 (1996). ArticleCASPubMed Google Scholar
Fang, D. & Liu, Y. C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunol.2, 870–875 (2001). ArticleCAS Google Scholar
Zheng, Y., Bagrodia, S. & Cerione, R. A. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J. Biol. Chem.269, 18727–18730 (1994). ArticleCASPubMed Google Scholar
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995). ArticleCASPubMed Google Scholar
Sano, H. et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem.278, 14599–14602 (2003). ArticleCASPubMed Google Scholar
Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE2003, RE5 (2003). ArticlePubMed Google Scholar
Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature423, 550–555 (2003). ArticleCASPubMed Google Scholar
Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell4, 119–129 (2003). ArticleCASPubMed Google Scholar
Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J. M. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature432, 1027–1032 (2004). ArticleCASPubMed Google Scholar
Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci.29, 233–242 (2004). ArticleCASPubMed Google Scholar
Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell18, 13–24 (2005). ArticleCASPubMed Google Scholar
Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science300, 1574–1577 (2003). ArticleCASPubMed Google Scholar
Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Med.10, 530–534 (2004). ArticleCASPubMed Google Scholar
Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev.15, 2203–2208 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem.276, 38349–38352 (2001). ArticleCASPubMed Google Scholar
Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science292, 1728–1731 (2001). ArticleCASPubMed Google Scholar
Tschopp, O. et al. Essential role of protein kinase B γ (PKB γ/Akt3) in postnatal brain development but not in glucose homeostasis. Development132, 2943–2954 (2005). ArticleCASPubMed Google Scholar
Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem.68, 965–1014 (1999). ArticleCASPubMed Google Scholar
Bae, S. S., Cho, H., Mu, J. & Birnbaum, M. J. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J. Biol. Chem.278, 49530–49536 (2003). ArticleCASPubMed Google Scholar
Jiang, Z. Y. et al. Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc. Natl Acad. Sci. USA100, 7569–7574 (2003). ArticleCASPubMedPubMed Central Google Scholar
Calera, M. R. et al. Insulin increases the association of Akt-2 with Glut4-containing vesicles. J. Biol. Chem.273, 7201–7204 (1998). ArticleCASPubMed Google Scholar
Yamada, E. et al. Akt2 phosphorylates Synip to regulate docking and fusion of GLUT4-containing vesicles. J. Cell Biol.168, 921–928 (2005). ArticleCASPubMedPubMed Central Google Scholar
Masure, S. et al. Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3. Eur. J. Biochem.265, 353–360 (1999). ArticleCASPubMed Google Scholar
Standaert, M. L., Bandyopadhyay, G., Kanoh, Y., Sajan, M. P. & Farese, R. V. Insulin and PIP3 activate PKC-ζ by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry40, 249–255 (2001). ArticleCASPubMed Google Scholar
Farese, R. V. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am. J. Physiol. Endocrinol. Metab.283, E1–E11 (2002). ArticleCASPubMed Google Scholar
Farese, R. V., Sajan, M. P. & Standaert, M. L. Atypical protein kinase C in insulin action and insulin resistance. Biochem. Soc. Trans.33, 350–353 (2005). ArticleCASPubMed Google Scholar
Pouyssegur, J., Volmat, V. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol.64, 755–763 (2002). ArticleCASPubMed Google Scholar
Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science286, 1374–1377 (1999). ArticleCASPubMed Google Scholar
Bost, F. et al. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes54, 402–411 (2005). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994). ArticleCASPubMed Google Scholar
Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol.5, 875–885 (2004). ArticleCAS Google Scholar
Matos, P. et al. Small GTPase Rac1: structure, localization, and expression of the human gene. Biochem. Biophys. Res. Commun.277, 741–751 (2000). ArticleCASPubMed Google Scholar
Marks, P. W. & Kwiatkowski, D. J. Genomic organization and chromosomal location of murine Cdc42. Genomics38, 13–18 (1996). ArticleCASPubMed Google Scholar
Marcusohn, J., Isakoff, S. J., Rose, E., Symons, M. & Skolnik, E. Y. The GTP-binding protein Rac does not couple PI 3-kinase to insulin-stimulated glucose transport in adipocytes. Curr. Biol.5, 1296–1302 (1995). ArticleCASPubMed Google Scholar
Usui, I., Imamura, T., Huang, J., Satoh, H. & Olefsky, J. M. Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J. Biol. Chem.278, 13765–13774 (2003). ArticleCASPubMed Google Scholar
Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK) — from inflammation to development. Curr. Opin. Cell Biol.10, 205–219 (1998). ArticleCASPubMed Google Scholar
Zarubin, T. & Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res.15, 11–18 (2005). ArticleCASPubMed Google Scholar
Furtado, L. M., Somwar, R., Sweeney, G., Niu, W. & Klip, A. Activation of the glucose transporter GLUT4 by insulin. Biochem. Cell Biol.80, 569–578 (2002). ArticleCASPubMed Google Scholar
Carlson, C. J., Koterski, S., Sciotti, R. J., Poccard, G. B. & Rondinone, C. M. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes52, 634–641 (2003). ArticleCASPubMed Google Scholar
Chiang, S. H. et al. TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J.22, 2679–2691 (2003). ArticleCASPubMedPubMed Central Google Scholar
Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol.2, 294–307 (2001). ArticleCAS Google Scholar
Molero, J. C. et al. c-Cbl-deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. J. Clin. Invest.114, 1326–1333 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhou, Q. L. et al. Analysis of insulin signalling by RNAi-based gene silencing. Biochem. Soc. Trans.32, 817–821 (2004). ArticleCASPubMed Google Scholar
Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA102, 13212–13217 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev.17, 1340–1345 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell122, 473–483 (2005). ArticleCASPubMed Google Scholar
Becker, A. B. & Roth, R. A. Insulin receptor structure and function in normal and pathological conditions. Annu. Rev. Med.41, 99–115 (1990). ArticleCASPubMed Google Scholar
Goren, H. J., White, M. F. & Kahn, C. R. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity. Biochemistry26, 2374–2382 (1987). ArticleCASPubMed Google Scholar
Sesti, G. et al. Tissue-specific expression of two alternatively spliced isoforms of the human insulin receptor protein. Acta Diabetol.31, 59–65 (1994). ArticleCASPubMed Google Scholar
Yamaguchi, Y. et al. Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology129, 2058–2066 (1991). ArticleCASPubMed Google Scholar
Leibiger, B. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic β cells. Mol. Cell7, 559–570 (2001). ArticleCASPubMed Google Scholar
Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science283, 381–387 (1999). ArticleCASPubMed Google Scholar