The emerging shape of the ESCRT machinery (original) (raw)
Luzio, J. P. et al. Lysosome-endosome fusion and lysosome biogenesis. J. Cell Sci.113, 1515–1524 (2000). CASPubMed Google Scholar
Welsch, S. et al. Ultrastructural analysis of ESCRT proteins suggests a role for endosome-associated tubular–vesicular membranes in ESCRT function. Traffic7, 1551–1566 (2006). CASPubMed Google Scholar
Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol.20, 395–425 (2004). CASPubMed Google Scholar
Odorizzi, G. The multiple personalities of Alix. J. Cell Sci.119, 3025–3032 (2006). CASPubMed Google Scholar
Slagsvold, T., Pattni, K., Malerod, L. & Stenmark, H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol.16, 317–326 (2006). CASPubMed Google Scholar
Penalva, M. A. & Arst, H. N. Jr. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev. Microbiol.58, 425–451 (2004). CASPubMed Google Scholar
Clague, M. J. Membrane transport: a coat for ubiquitin. Curr. Biol.12, R529–R531 (2002). CASPubMed Google Scholar
Clague, M. & Urbe, S. Hrs function: viruses provide the clue. Trends Cell Biol.13, 603–606 (2003). CASPubMed Google Scholar
Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol.4, 534–539 (2002). CASPubMed Google Scholar
Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell3, 1389–1402 (1992). CASPubMedPubMed Central Google Scholar
Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell7, 985–999 (1996). CASPubMedPubMed Central Google Scholar
Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell108, 261–269 (2002). CASPubMed Google Scholar
Komada, M. & Soriano, P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev.13, 1475–1485 (1999). CASPubMedPubMed Central Google Scholar
Kanazawa, C. et al. Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochem. Biophys. Res. Commun.309, 848–856 (2003). CASPubMed Google Scholar
Razi, M. & Futter, C. E. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol. Biol. Cell17, 3469–3483 (2006). CASPubMedPubMed Central Google Scholar
Bache, K., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem.278, 12513–12521 (2003). CASPubMed Google Scholar
Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J.19, 4577–4588 (2000). CASPubMedPubMed Central Google Scholar
Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci.114, 2255–2263 (2001). CASPubMed Google Scholar
Urbe, S., Mills, I. G., Stenmark, H., Kitamura, N. & Clague, M. J. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol. Cell. Biol.20, 7685–7692 (2000). CASPubMedPubMed Central Google Scholar
Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol.4, 394–398 (2002). CASPubMed Google Scholar
Urbe, S. et al. The UIM domain of Hrs couples receptor sorting to vesicle formation. J. Cell Sci.116, 4169–4179 (2003). CASPubMed Google Scholar
Murk, J. L. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA100, 13332–13337 (2003). CASPubMedPubMed Central Google Scholar
Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell13, 1313–1328 (2002). References 21 and 24 provide evidence that ubiquitylated receptors are sorted at endosomes via HRS and clathrin, and clathrin in turn restricts the distribution of HRS (reference 26). CASPubMedPubMed Central Google Scholar
McCullough, J. et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol.16, 160–165 (2006). CASPubMed Google Scholar
Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci.119, 2414–2424 (2006). CASPubMed Google Scholar
Asao, H. et al. Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J. Biol. Chem.272, 32785–32791 (1997). CASPubMed Google Scholar
Takata, H., Kato, M., Denda, K. & Kitamura, N. A Hrs binding protein having a Src homology 3 domain is involved in intracellular degradation of growth factors and their receptors. Genes Cells5, 57–69 (2000). CASPubMed Google Scholar
Kobayashi, H. et al. Hrs, a mammalian master molecule in vesicular transport and protein sorting, suppresses the degradation of ESCRT proteins signal transducing adaptor molecule 1 and 2. J. Biol. Chem.280, 10468–10477 (2005). CASPubMed Google Scholar
Mizuno, E., Kawahata, K., Okamoto, A., Kitamura, N. & Komada, M. Association with Hrs is required for the early endosomal localization, stability, and function of STAM. J. Biochem.135, 385–396 (2004). CASPubMed Google Scholar
Mao, Y. et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell100, 447–456 (2000). CASPubMed Google Scholar
Hanyaloglu, A., McCullagh, E. & von Zastrow, M. Essential role of Hrs in a recycling mechanism mediating functional resensitization of cell signaling. EMBO J.24, 2265–2283 (2005). CASPubMedPubMed Central Google Scholar
Mizuno, E., Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell14, 3675–3689 (2003). CASPubMedPubMed Central Google Scholar
Misra, S. & Hurley, J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell97, 657–666 (1999). CASPubMed Google Scholar
Dumas, J. J. et al. Multivalent endosome targeting by homodimeric EEA1. Mol. Cell8, 947–958 (2001). CASPubMed Google Scholar
Stahelin, R. V. et al. Phosphatidylinositol-3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J. Biol. Chem.277, 26379–26388 (2002). CASPubMed Google Scholar
Pullan, L. et al. The endosome-associated protein Hrs is hexameric and controls cargo sorting as a “master molecule”. Structure14, 661–671 (2006). CASPubMed Google Scholar
Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA100, 7626–7631 (2003). CASPubMedPubMed Central Google Scholar
Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol.162, 435–442 (2003). CASPubMedPubMed Central Google Scholar
Pornillos, O., Alam, S., Davis, D. & Sundquist, W. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nature Struct. Biol.9, 812–817 (2002). CASPubMed Google Scholar
Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J.21, 2397–2406 (2002). CASPubMedPubMed Central Google Scholar
Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol.162, 425–434 (2003). CASPubMedPubMed Central Google Scholar
Katzmann, D., Stefan, C., Babst, M. & Emr, S. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol.162, 413–423 (2003). CASPubMedPubMed Central Google Scholar
Bilodeau, P., Winistorfer, S., Kearney, W., Robertson, A. & Piper, R. Vps27–Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J. Cell Biol.163, 237–243 (2003). CASPubMedPubMed Central Google Scholar
Katzmann, D., Babst, M. & Emr, S. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell106, 145–155 (2001). CASPubMed Google Scholar
Oestreich, A. J., Davies, B. A., Payne, J. A. & Katzmann, D. J. Mvb12 is a novel member of ESCRT-I involved in cargo selection by the MVB pathway. Mol. Biol. Cell18, 646–657 (2006). PubMed Google Scholar
Chu, T., Sun, J., Saksena, S. & Emr, S. D. New component of ESCRT-I regulates endosomal sorting complex assembly. J. Cell Biol.175, 815–823 (2006). CASPubMedPubMed Central Google Scholar
Curtiss, M., Jones, C. & Babst, M. Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from MVBs requires the subunit Mvb12. Mol. Biol. Cell18, 636–645 (2007). CASPubMedPubMed Central Google Scholar
Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J.26, 600–612 (2007). CASPubMedPubMed Central Google Scholar
Bache, K. G. et al. The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor downregulation. Mol. Biol. Cell15, 4337–4346 (2004). CASPubMedPubMed Central Google Scholar
Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem.276, 11735–11742 (2001). CASPubMed Google Scholar
Eastman, S. W., Martin-Serrano, J., Chung, W., Zang, T. & Bieniasz, P. D. Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J. Biol. Chem.280, 628–636 (2005). CASPubMed Google Scholar
Stuchell, M. D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem.279, 36059–36071 (2004). CASPubMed Google Scholar
Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian “Class E” compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci.118, 3003–3017 (2005). References 15 and 54 show that in mammalian cells ESCRT-I depletion results in extensive tubulation and prevents ILVs formation, whereas HRS depletion produces enlarged, spherical MVBs with few ILVs. CASPubMed Google Scholar
Kostelansky, M. S. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell125, 113–126 (2006). CASPubMedPubMed Central Google Scholar
Teo, H. et al. ESCRT-I Core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell125, 99–111 (2006). CASPubMed Google Scholar
Feng, G. H., Lih, C. J. & Cohen, S. N. TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence. Cancer Res.60, 1736–1741 (2000). CASPubMed Google Scholar
Teo, H., Veprintsev, D. B. & Williams, R. L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem.279, 28689–28696 (2004). CASPubMed Google Scholar
Sundquist, W. I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell13, 783–789 (2004). CASPubMed Google Scholar
Pineda-Molina, E. et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic7, 1007–1016 (2006). CASPubMed Google Scholar
Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol.80, 9465–9680 (2006). CASPubMedPubMed Central Google Scholar
Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell3, 283–289 (2002). CASPubMed Google Scholar
Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell7, 559–569 (2004). CASPubMed Google Scholar
Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature431, 221–225 (2004). References 55, 56, 63 and 64 show the structural organization of multisubunit ESCRT-I and -II cores, as well as the structure of the ESCRT-II Ptdins3P-binding GLUE domain, and demonstrate a direct link between yeast ESCRT-I and ESCRT-II. CASPubMed Google Scholar
Wernimont, A. K. & Weissenhorn, W. Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II. BMC Struct. Biol.4, 10 (2004). PubMedPubMed Central Google Scholar
Yorikawa, C. et al. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem. J.387, 17–26 (2005). CASPubMedPubMed Central Google Scholar
Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem.280, 19600–19606 (2005). CASPubMed Google Scholar
Hirano, S. et al. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Struct. Mol. Biol.13, 1031–1032 (2006). CAS Google Scholar
Alam, S. L. et al. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature Struct. Mol. Biol.13, 1029–1030 (2006). CAS Google Scholar
Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell9, 711–720 (2005). CASPubMed Google Scholar
Herz, H. M. et al. vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development133, 1871–1880 (2006). CASPubMed Google Scholar
Vaccari, T. & Bilder, D. The Drosophila tumor suppressor Vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell9, 687–698 (2005). References 71, 72 and 73 demonstrate an important role for ESCRT-II in metazoan cells. CASPubMed Google Scholar
Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell9, 699–710 (2005). CASPubMed Google Scholar
Bowers, K. et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J. Biol. Chem.281, 5094–5105 (2006). CASPubMed Google Scholar
Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell3, 271–282 (2002). References 45, 62 and 76 first defined the functions and compositions of ESCRT-I, -II and -III, respectively. CASPubMed Google Scholar
Amerik, A., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell11, 3365–3380 (2000). References 77, 111 and 113 demonstrate a requirement for a DUB in the endocytic pathway in yeast. CASPubMedPubMed Central Google Scholar
Kranz, A., Kinner, A. & Kolling, R. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol. Biol. Cell12, 711–723 (2001). CASPubMedPubMed Central Google Scholar
Howard, T. L., Stauffer, D. R., Degnin, C. R. & Hollenberg, S. M. CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J. Cell Sci.114, 2395–2404 (2001). CASPubMed Google Scholar
Nickerson, D. P., West, M. & Odorizzi, G. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J. Cell Biol.175, 715–720 (2006). Reference 80 demonstrates that Did2 has an important role in Vps4-mediated disassembly of ESCRT-III but not of ESCRT-I and-II, that ILV formation can be uncoupled from ESCRT-III disassembly and that class E compartments can have either multilammelar structures without ILVs (vps4Δ) or tubular structures with ILVs (did2Δ). CASPubMedPubMed Central Google Scholar
Horii, M. et al. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway. Biochem. J.400, 23–32 (2006). CASPubMedPubMed Central Google Scholar
Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell10, 821–830 (2006). The structure of an ESCRT-III subunit provides a model for how activated subunits might assemble into dimers and arrays. CASPubMed Google Scholar
Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA103, 19140–19145 (2006). CASPubMedPubMed Central Google Scholar
Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J. Biol. Chem.281, 23083–23091 (2006). CASPubMed Google Scholar
McCullough, J., Clague, M. J. & Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol.166, 487–492 (2004). Reference 85 shows that AMSH is a Lys63-ubiquitin-chain specific DUB that has a role in sorting a growth-factor receptor at endosomes, and is recruited to CHMPs (shown in references 25, 84 and 88). CASPubMedPubMed Central Google Scholar
Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J.24, 3658–3669 (2005). Structure-based mutagenesis suggests that during their disassembly by VPS4, ESCRT-III subunits are pulled into a central pore of the VPS4 double ring after the initial capture of ESCRT-III subunits by a three-helix bundle of VPS4 MIT domain (shown in reference 95). CASPubMedPubMed Central Google Scholar
von Schwedler, U. K. et al. The protein network of HIV budding. Cell114, 701–713 (2003). References 87 and 90 were the first to characterize the network of interactions among the human ESCRT components and to show their roles in HIV-1 budding. CASPubMed Google Scholar
Tsang, H. T. et al. A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics88, 333–346 (2006). CASPubMed Google Scholar
Bowers, K. et al. Protein–protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae. Traffic5, 194–210 (2004). CASPubMed Google Scholar
Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA100, 12414–12419 (2003). CASPubMedPubMed Central Google Scholar
Lin, Y., Kimpler, L. A., Naismith, T. V., Lauer, J. M. & Hanson, P. I. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7–1 with itself, membranes, and the AAA+ ATPase SKD1. J. Biol. Chem.280, 12799–12809 (2005). CASPubMed Google Scholar
Eugster, A. et al. Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. Mol. Biol. Cell15, 3031–3041 (2004). CASPubMedPubMed Central Google Scholar
Whitley, P. et al. Identification of mammalian Vps24p as an effector of phosphatidylinositol-3,5-bisphosphate-dependent endosome compartmentalization. J. Biol. Chem.278, 38786–38795 (2003). CASPubMed Google Scholar
Kyuuma, M. et al. AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/late endosomes. Cell Struct. Funct.31, 159–172 (2007). PubMed Google Scholar
Scott, A. et al. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc. Natl Acad. Sci. USA102, 13813–13818 (2005). CASPubMedPubMed Central Google Scholar
Ward, D. M. et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J. Biol. Chem.280, 10548–10555 (2005). CASPubMed Google Scholar
Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet.37, 806–808 (2005). CASPubMed Google Scholar
Bache, K. G. et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol. Biol. Cell17, 2513–2523 (2006). CASPubMedPubMed Central Google Scholar
Shim, J. H. et al. CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. J. Cell Biol.172, 1045–1056 (2006). CASPubMedPubMed Central Google Scholar
Azmi, I. et al. Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. J. Cell Biol.172, 705–717 (2006). CASPubMedPubMed Central Google Scholar
Sachse, M., Strous, G. J. & Klumperman, J. ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles. J. Cell Sci.117, 1699–1708 (2004). CASPubMed Google Scholar
Scheuring, S. et al. Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. J. Mol. Biol.312, 469–480 (2001). CASPubMed Google Scholar
Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J.17, 2982–2993 (1998). CASPubMedPubMed Central Google Scholar
Fujita, H. et al. A dominant negative form of the AAA ATPase SKD1/VPS4 impairs membrane trafficking out of endosomal/lysosomal compartments: class E vps phenotype in mammalian cells. J. Cell Sci.116, 401–414 (2003). CASPubMed Google Scholar
DeLaBarre, B., Christianson, J. C., Kopito, R. R. & Brunger, A. T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell22, 451–462 (2006). CASPubMed Google Scholar
Fujita, H. et al. Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B. J. Cell Sci.117, 2997–3009 (2004). CASPubMed Google Scholar
Yeo, S. C. et al. Vps20p and Vta1p interact with Vps4p and function in multivesicular body sorting and endosomal transport in Saccharomyces cerevisiae. J. Cell Sci.116, 3957–3970 (2003). CASPubMed Google Scholar
Shiflett, S. et al. Characterization of Vta1p, a class E Vps protein in Saccharomyces cerevisiae. J. Biol. Chem.279, 10982–10990 (2004). CASPubMed Google Scholar
Luhtala, N. & Odorizzi, G. Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J. Cell Biol.166, 717–729 (2004). CASPubMedPubMed Central Google Scholar
Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta1695, 189–207 (2004). CASPubMed Google Scholar
Losko, S., Kopp, F., Kranz, A. & Kolling, R. Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 mutant. Mol. Biol. Cell12, 1047–1059 (2001). CASPubMedPubMed Central Google Scholar
Reggiori, F. & Pelham, H. R. B. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and-independent targeting. EMBO J.20, 5176–5186 (2001). Shows that although ubiquitin functions as a key signal for the sorting of membrane proteins into the MVBs, ubiquitin-independent sorting can also occur. CASPubMedPubMed Central Google Scholar
Dupre, S. & Haguenauer-Tsapis, R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol. Cell. Biol.21, 4482–4494 (2001). CASPubMedPubMed Central Google Scholar
Avvakumov, G. V. et al. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J. Biol. Chem.281, 38061–38070 (2006). CASPubMed Google Scholar
Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell111, 1041–1054 (2002). CASPubMed Google Scholar
Kato, M., Miyazawa, K. & Kitamura, N. A deubiquitinating enzyme UBPY interacts with the Src homology 3 domain of Hrs-binding protein via a novel binding motif PX(V/I)(D/N)RXXKP. J. Biol. Chem.275, 37481–37487 (2000). CASPubMed Google Scholar
Kaneko, T. et al. Structural insight into modest binding of a non-PXXP ligand to the signal transducing adaptor molecule-2 Src homology 3 domain. J. Biol. Chem.278, 48162–48168 (2003). CASPubMed Google Scholar
Ren, J., Kee, Y., Huibregtse, J. M. & Piper, R. C. Hse1, a component of the yeast Hrs-STAM ubiquitin sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies. Mol. Biol. Cell18, 324–335 (2007). CASPubMedPubMed Central Google Scholar
Row, P. E., Prior, I. A., McCullough, J., Clague, M. J. & Urbe, S. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J. Biol. Chem.281, 12618–12624 (2006). CASPubMed Google Scholar
Mizuno, E., Kobayashi, K., Yamamoto, A., Kitamura, N. & Komada, M. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic7, 1017–1031 (2006). References 120, 121 and 75 report on a key role for the DUB UBPY in receptor downregulation and endosomal ubiquitin dynamics. CASPubMed Google Scholar
Alwan, H. A. & van Leeuwen, J. E. UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J. Biol. Chem.282, 1658–1669 (2007). CASPubMed Google Scholar
Kee, Y., Munoz, W., Lyon, N. & Huibregtse, J. M. The Ubp2 deubiquitinating enzyme modulates Rsp5-dependent K63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem.281, 36724–36731 (2006). CASPubMed Google Scholar
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell122, 735–749 (2005). CASPubMed Google Scholar
Rusten, T. E. et al. Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol. Biol. Cell17, 3989–4001 (2006). CASPubMedPubMed Central Google Scholar
White, I. J., Bailey, L. M., Aghakhani, M. R., Moss, S. E. & Futter, C. E. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J.25, 1–12 (2006). CASPubMed Google Scholar
Field, M. C., Gabernet-Castello, C. & Dacks, J. B. in Origins and Evolution of Eukaryotic Endomembranes and Cytoskeleton (ed. Jékely, G.) (Landes Bioscience, Austin 2007). Google Scholar
Slater, R. & Bishop, N. E. Genetic structure and evolution of the Vps25 family, a yeast ESCRT-II component. BMC Evol. Biol.6, 59 (2006). PubMedPubMed Central Google Scholar
Yang, M. et al. The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation. J. Cell Sci.117, 3831–3838 (2004). CASPubMed Google Scholar
Fisher, R. D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem.278, 28976–28984 (2003). CASPubMed Google Scholar
Madshus, I. H. Ubiquitin binding in endocytosis — how tight should it be and where does it happen? Traffic7, 258–261 (2006). CASPubMed Google Scholar
Hirano, S. et al. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature Struct. Mol. Biol.13, 272–277 (2006). CAS Google Scholar
Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM–ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J.22, 4597–4606 (2003). CASPubMedPubMed Central Google Scholar
Misra, S., Miller, G. J. & Hurley, J. H. Recognizing phosphatidylinositol 3-phosphate. Cell107, 559–562 (2001). CASPubMed Google Scholar
Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science303, 531–534 (2004). Highlights that not only proteins, but also lipids (lysobisphosphatidic acid (LBPA) in this case) can have crucial roles in forming MVBs. CASPubMed Google Scholar
Johnson, E. E., Overmeyer, J. H., Gunning, W. T. & Maltese, W. A. Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J. Cell Sci.119, 1219–1232 (2006). CASPubMed Google Scholar
Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol.155, 1251–1264 (2001). CASPubMedPubMed Central Google Scholar
Bruckmann, A., Kunkel, W., Augsten, K., Wetzker, R. & Eck, R. The deletion of CaVPS34 in the human pathogenic yeast Candida albicans causes defects in vesicle-mediated protein sorting and nuclear segregation. Yeast18, 343–353 (2001). CASPubMed Google Scholar