- Frisard, M. & Ravussin, E. Energy metabolism and oxidative stress: impact on the metabolic syndrome and the ageing process. Endocrine 29, 27–32 (2006).
Article CAS Google Scholar
- Harman, D. Ageing: phenomena and theories. Ann. NY Acad. Sci. 854, 1–7 (1998).
Article CAS Google Scholar
- Balaban, R. S., Nemoto, S., & Finkel, T. Mitochondria, oxidants, and ageing. Cell 120, 483–495 (2005).
Article CAS Google Scholar
- Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59, 527–605 (1979).
Article CAS Google Scholar
- Bayne, A. C., Mockett, R. J., Orr, W. C. & Sohal, R. S. Enhanced catabolism of mitochondrial superoxide/hydrogen peroxide and ageing in transgenic Drosophila. Biochem. J. 391, 277–284 (2005).
Article CAS Google Scholar
- Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007).
Article CAS Google Scholar
- Gius, D. & Spitz, D. R. Redox signaling in cancer biology. Antioxid. Redox Signal. 8, 1249–1252 (2006).
Article CAS Google Scholar
- Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243–270 (2006).
Article CAS Google Scholar
- Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001).
Article CAS Google Scholar
- Vivancos, A. P., Castillo, E. A., Jones, N., Ayte, J. & Hidalgo, E. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52, 1427–1435 (2004).
Article CAS Google Scholar
- Tavakoli, N., Kluge, C., Golldack, D., Mimura, T. & Dietz, K. J. Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant. J. 28, 51–59 (2001).
Article CAS Google Scholar
- Davis, D. A. et al. HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase. Biochem. J. 346, 305–311 (2000).
Article CAS Google Scholar
- Atmane, N., Dairou, J., Paul, A., Dupret, J. M. & Rodrigues-Lima, F. Redox regulation of the human xenobiotic metabolizing enzyme arylamine _N_-acetyltransferase 1 (NAT1). Reversible inactivation by hydrogen peroxide. J. Biol. Chem. 278, 35086–35092 (2003).
Article CAS Google Scholar
- Poliak, A. et al. Inhibition of indoleamine 2,3 dioxygenase activity by H2O2 . Arch. Biochem. Biophys. 450, 9–19 (2006).
Article Google Scholar
- Song, H., Bao, S., Ramanadham, S. & Turk, J. Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2. Biochemistry 45, 6392–6406 (2006).
Article CAS Google Scholar
- Bossis, G. & Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357 (2006).
Article CAS Google Scholar
- Lee, S. R., Kwon, K. S., Kim, S. R. & Rhee, S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366–15372 (1998).
Article CAS Google Scholar
- Yu, C. K., Li, S. & Whorton, A. R. redox regulation of PTEN by _S_-nitrosothiols. Mol. Pharmacol. 68, 847–854 (2005).
CAS PubMed Google Scholar
- Rhee, S. G., Yang, K. S., Kang, S. W., Woo, H. A. & Chang, T. S. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid. Redox Signal. 7, 619–626 (2005).
Article CAS Google Scholar
- Woo, H. A. et al. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278, 47361–47364 (2003).
Article CAS Google Scholar
- Caplan, J. F., Filipenko, N. R., Fitzpatrick, S. L. & Waisman, D. M. Regulation of annexin A2 by reversible glutathionylation. J. Biol. Chem. 279, 7740–7750 (2004).
Article CAS Google Scholar
- Ahn, S. G. & Thiele, D. J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17, 516–528 (2003).
Article CAS Google Scholar
- Bulteau, A. L., Ikeda-Saito, M. & Szweda, L. I. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 42, 14846–14855 (2003).
Article CAS Google Scholar
- Nulton-Persoson, A. C., Starke, D. W., Mieval, J. J. & Szweda, L. I. Reversible inactivation of α-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42, 4235–4242 (2003).
Article Google Scholar
- Taylor, E. R. et al. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278, 19603–19610 (2003).
Article CAS Google Scholar
- Mueller, S. Sensitive and nonenzymatic measurement of hydrogen peroxide in biological systems. Free Radic. Biol. Med. 29, 410–415 (2000).
Article CAS Google Scholar
- Seaver, L. C. & Imlay, J. A. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183, 7182–7189 (2001).
Article CAS Google Scholar
- Polle, A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulation as a step towards flux analysis. Plant Physiol. 126, 445–462 (2001).
Article CAS Google Scholar
- Finkel, T. Redox-dependent signal transduction. FEBS Lett. 476, 52–54 (2000).
Article CAS Google Scholar
- Alexandrova, A. Y., Kopnin, P. B., Vasiliev, J. M. & Kopnin, B. P. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp. Cell Res. 312, 2066–2073 (2006).
Article CAS Google Scholar
- Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).
Article CAS Google Scholar
- Schimmel, M., Bauer, G. Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Oncogene 21, 5886–5896 (2002).
Article CAS Google Scholar
- Giles, G. I. The redox regulation of thiol dependent signaling pathways in cancer. Curr. Pharm. Des. 12, 4427–4443 (2006).
Article CAS Google Scholar
- North, S., Moenner, M. & Bikfalvi, A. Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett. 218, 1–14 (2005).
Article CAS Google Scholar
- Meng, T. C., Buckley D.A, Galic, S., Tiganis, T. & Tonks, N. K. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J. Biol. Chem. 279, 37716–37725 (2004).
Article CAS Google Scholar
- Cho, S.H. et al. Redox regulation of PTEN and protein tyrosine phosphatases in H2O2-mediated cell signaling. FEBS Lett. 560, 7–13 (2004).
Article CAS Google Scholar
- Caselli, A. et al. The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2 . J. Biol. Chem. 273, 32554–32560 (1998).
Article CAS Google Scholar
- Chiarugi, P. et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol. 161, 933–944 (2003).
Article CAS Google Scholar
- Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).
Article CAS Google Scholar
- Sohn, J. & Rudolph, J. Catalytic and chemical competence of regulation of CDC25 phosphatase by oxidation/reduction. Biochemistry 42, 10060–10070 (2003).
Article CAS Google Scholar
- Nakashima, I. et al. Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Arch. Biochem. Biophys. 434, 3–10 (2005).
Article CAS Google Scholar
- Paravicini, T. M. & Touyz, R. M. Redox signaling in hypertension. Cardiovasc. Res. 71, 247–258 (2006).
Article CAS Google Scholar
- Passos, J. F. & Von Zglinicki, T. Oxygen free radicals in cell senescence: are they signal transducers? Free Radic. Res. 40, 1277–1283 (2006).
Article CAS Google Scholar
- Kowaltowski, A. J., Castilho, R. F. & Vercesi, A. E. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495, 12–15 (2001).
Article CAS Google Scholar
- Trinei, M. et al. A p53–p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21, 3872–3878 (2002).
Article CAS Google Scholar
- Pinton, P. et al. Protein kinase Cβ and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315, 659–663 (2007).
Article CAS Google Scholar
- Migliaccio, E. et al. The p66Shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).
Article CAS Google Scholar
- Giorgio, M. et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221–233 (2005).
Article CAS Google Scholar
- Bloch, C.A. & Ausubel, F.M. Paraquat-mediated selection for mutations in the manganese-superoxide dismutase gene sodA. J. Bacteriol. 168, 795–798 (1986).
Article CAS Google Scholar
- Orr, W. C. & Sohal, R. S. Effects of Cu-Zn superoxide dismutase overexpression of life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 301, 34–40 (1993).
Article CAS Google Scholar
- Amstad, P., Moret, R. & Cerutti, P. Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress. J. Biol. Chem. 269, 1606–1609 (1994).
CAS PubMed Google Scholar
- Wallace, D. C. Animal models for mitochondrial disease. Methods Mol. Biol. 197, 3–54 (2002).
CAS PubMed Google Scholar
- Keaney, M., Matthijssens, F., Sharpe, M., Vanfleteren, J. & Gems, D. Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard ageing in the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 37, 239–250 (2004).
Article CAS Google Scholar
- Melov, S. Therapeutics against mitochondrial oxidative stress in animal models of ageing. Ann. NY Acad. Sci. 959, 330–340 (2002).
Article CAS Google Scholar
- Peng, J., Stevenson, F. F., Doctrow, S. R. & Andersen, J. K. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J. Biol. Chem. 280, 29194–29198 (2005).
Article CAS Google Scholar
- Landis, G. N. & Tower, J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 126, 365–379 (2005).
Article CAS Google Scholar
- Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).
Article CAS Google Scholar
- Francia, P. et al. Deletion of p66 Shc gene protects against age-related endothelial dysfunction. Circulation 110, 2889–2895 (2004).
Article CAS Google Scholar
- Menini, S. et al. Deletion of p66 Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 55, 1642–1650 (2006).
Article CAS Google Scholar
- Napoli, C. et al. Deletion of the p66 Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc. Natl Acad. Sci. USA 18, 2112–2116 (2003).
Article Google Scholar
- Rota, M. et al. Diabetes promotes cardiac stem cell ageing and heart failure, which are prevented by deletion of the p66 Shc gene. Circ. Res. 99, 42–52 (2006).
Article CAS Google Scholar
- Holzenberger M. The GH/IGF-I axis and longevity. Eur. J. Endocrinol. 151 (Suppl. 1), S23–S27 (2004).
Article CAS Google Scholar
- Sedensky, M. M. & Morgan, P. G. Mitochondrial respiration and reactive oxygen species in mitochondrial ageing mutants. Exp. Gerontol. 41, 237–245 (2006).
Article CAS Google Scholar
- Martin, G. M. Somatic mutagenesis and antimutagenesis in ageing research. Mutat. Res. 350, 35–41 (1996).
Article Google Scholar
- Trifunovich, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).
Article Google Scholar
- Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian ageing. Science 309, 481–484 (2005).
Article CAS Google Scholar
- Forster, M. J., Morris, P. & Sohal, R. S. Genotype and age influence the effect of caloric intake on mortality. FASEB J. 17, 690–692 (2003).
Article Google Scholar
- Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A. & Bartke, A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl Acad. Sci. USA 103, 7901–7905 (2006).
Article CAS Google Scholar
- Magwere, T. et al. The effect of dietary restriction on mitochondrial protein density and flight muscle mitochondrial morphology in Drosophila. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 36–47 (2004).
Article Google Scholar
- Lopez-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006).
Article CAS Google Scholar
- Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).
Article CAS Google Scholar
- Weindruch, R. & Walford R. L. The Retardation of Ageing and Disease by Dietary Restriction (Charles C. Thomas, Springfield, Illinois, 1988).
Google Scholar
- Masaro, E. J., Yu, B. P. & Bertrand, H. A. Action of food restriction in delaying the ageing process. Proc. Natl Acad. Sci. USA 79, 4239–4241 (1982).
Article Google Scholar
- McCarter, R. J. & Palmer, J. Energy metabolism and ageing: a lifelong study of Fischer 344 rats. Am. J. Physiol. 263, E448–E452 (1992).
CAS PubMed Google Scholar
- Gredilla, R., Lopez-Torres, M. & Barja, G. Effect of time of restriction on the decrease in mitochondrial H2O2 production and oxidative DNA damage in the heart of food-restricted rats. Microsc. Res. Tech. 59, 273–277 (2002).
Article CAS Google Scholar
- Hagopian, K. et al. Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria. Am. J. Physiol. Endocrinol. Metab. 288, E674–E684 (2005).
Article CAS Google Scholar
- Agarwal, S., Sharma, S., Agrawal, V. & Roy, N. Caloric restriction augments ROS defence in S. cerevisiae, by a Sir2p independent mechanism. Free Radic. Res. 39, 55–62 (2005).
Article CAS Google Scholar
- Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae life span by increasing respiration. Nature 418, 344–348 (2002).
Article CAS Google Scholar
- Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, 1998).
Google Scholar
- Sohal, R. S. & Allen, R. G. Oxidative stress as a causal factor in differentiation and ageing: a unifying hypothesis. Exp. Gerontol. 25, 499–522 (1990).
Article CAS Google Scholar