ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis (original) (raw)
Nathan, C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest.111, 769–778 (2003). An opinion paper that discusses the physiological and molecular basis of specificity in ROS and RNS signalling. ArticleCASPubMedPubMed Central Google Scholar
Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, Oxford, 1999). Google Scholar
Poole, L. B., Karplus, P. A. & Claiborne, A. Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol.44, 325–347 (2004). ArticleCASPubMed Google Scholar
Winterbourn, C. C. & Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med.27, 322–328 (1999). ArticleCASPubMed Google Scholar
Gilbert, H. F. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. Relat. Areas Mol. Biol.63, 69–172 (1990). CASPubMed Google Scholar
Hofmann, B., Hecht, H. J. & Flohe, L. Peroxiredoxins. Biol. Chem.383, 347–364 (2002). CASPubMed Google Scholar
Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science300, 650–653 (2003). Describes the structural basis of the sensitivity of a subgroup of peroxiredoxins to inactivation by overoxidation. ArticleCASPubMed Google Scholar
Wood, Z. A., Schroder, E., Robin Harris, J. & Poole, L. B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci.28, 32–40 (2003). ArticleCASPubMed Google Scholar
Le Moan, N., Clement, G., Le Maout, S., Tacnet, F. & Toledano, M. B. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J. Biol. Chem.281, 10420–10430 (2006). ArticleCASPubMed Google Scholar
D'Autreaux, B. et al. Reversible redox- and zinc-dependent dimerization of the Escherichia coli Fur protein. Biochemistry46, 1329–1342 (2007). ArticleCASPubMed Google Scholar
Ilbert, M., Graf, P. C. & Jakob, U. Zinc center as redox switch — new function for an old motif. Antioxid. Redox Signal8, 835–846 (2006). ArticleCASPubMed Google Scholar
Maret, W. Zinc and sulfur: a critical biological partnership. Biochemistry43, 3301–3309 (2004). ArticleCASPubMed Google Scholar
Conrad, M. et al. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol. Cell Biol.25, 7637–7644 (2005). ArticleCASPubMedPubMed Central Google Scholar
Maiorino, M. et al. Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase. J. Biol. Chem.280, 38395–38402 (2005). ArticleCASPubMed Google Scholar
Hidalgo, E. & Demple, B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J.13, 138–146 (1994). ArticleCASPubMedPubMed Central Google Scholar
Mukhopadhyay, P., Zheng, M., Bedzyk, L. A., LaRossa, R. A. & Storz, G. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl Acad. Sci. USA101, 745–750 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liochev, S. I. & Fridovich, I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. Natl Acad. Sci. USA89, 5892–5896 (1992). ArticleCASPubMedPubMed Central Google Scholar
Crack, J. C., Green, J., Cheesman, M. R., Le Brun, N. E. & Thomson, A. J. Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc. Natl Acad. Sci. USA104, 2092–2097 (2007). ArticleCASPubMedPubMed Central Google Scholar
Khoroshilova, N., Popescu, C., Munck, E., Beinert, H. & Kiley, P. J. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc. Natl Acad. Sci. USA94, 6087–6092 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, C. J. et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl Acad. Sci. USA98, 14895–14900 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yeo, W. S., Lee, J. H., Lee, K. C. & Roe, J. H. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol.61, 206–218 (2006). ArticleCASPubMed Google Scholar
Pantopoulos, K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. NY Acad. Sci.1012, 1–13 (2004). ArticleCASPubMed Google Scholar
Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279, 1718–1721 (1998). Identification of the OxyR regulatory disulphide bond by mass spectrometry. ArticleCASPubMed Google Scholar
Lee, J. W. & Helmann, J. D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature440, 363–367 (2006). Identification of the PerR metal-catalysed mechanism of His oxidation by H2O2. ArticleCASPubMed Google Scholar
Fuangthong, M., Atichartpongkul, S., Mongkolsuk, S. & Helmann, J. D. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol.183, 4134–4141 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mongkolsuk, S. & Helmann, J. D. Regulation of inducible peroxide stress responses. Mol. Microbiol.45, 9–15 (2002). ArticleCASPubMed Google Scholar
Sukchawalit, R., Loprasert, S., Atichartpongkul, S. & Mongkolsuk, S. Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J. Bacteriol.183, 4405–4412 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aslund, F., Zheng, M., Beckwith, J. & Storz, G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl Acad. Sci. USA96, 6161–6165 (1999). ArticleCASPubMedPubMed Central Google Scholar
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods3, 281–286 (2006). ArticleCASPubMed Google Scholar
Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell105, 103–113 (2001). ArticleCASPubMed Google Scholar
Lee, C. et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nature Struct. Mol. Biol.11, 1179–1185 (2004). ArticleCAS Google Scholar
Toledano, M. B. et al. Redox-dependent shift of OxyR–DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell78, 897–909 (1994). ArticleCASPubMed Google Scholar
Kim, S. O. et al. OxyR: a molecular code for redox-related signaling. Cell109, 383–396 (2002). ArticleCASPubMed Google Scholar
Toledano, M. B., Delaunay, A., Monceau, L. & Tacnet, F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem. Sci.29, 351–357 (2004). ArticleCASPubMed Google Scholar
Aslund, F. & Beckwith, J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell96, 751–753 (1999). ArticleCASPubMed Google Scholar
Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J. & Stamler, J. S. Nitrosative stress: activation of the transcription factor OxyR. Cell86, 719–729 (1996). ArticleCASPubMed Google Scholar
Fuangthong, M. & Helmann, J. D. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl Acad. Sci. USA99, 6690–6695 (2002). ArticleCASPubMedPubMed Central Google Scholar
Panmanee, W., Vattanaviboon, P., Poole, L. B. & Mongkolsuk, S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J. Bacteriol.188, 1389–1395 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. W., Soonsanga, S. & Helmann, J. D. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc. Natl Acad. Sci. USA104, 8743–8748 (2007). Identification of an OhrR mechanism that involves regulation by proteinS-thiolation. ArticleCASPubMedPubMed Central Google Scholar
Hong, M., Fuangthong, M., Helmann, J. D. & Brennan, R. G. Structure of an OhrR-OhrA operator complex reveals the DNA binding mechanism of the MarR family. Mol. Cell20, 131–141 (2005). ArticleCASPubMed Google Scholar
Herbig, A. F. & Helmann, J. D. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol.41, 849–859 (2001). ArticleCASPubMed Google Scholar
Helmann, J. D. et al. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol.185, 243–253 (2003). ArticleCASPubMedPubMed Central Google Scholar
D'Autreaux, B. et al. Spectroscopic description of the two nitrosyl-iron complexes responsible for fur inhibition by nitric oxide. J. Am. Chem. Soc.126, 6005–6016 (2004). ArticleCASPubMed Google Scholar
Moore, C. M., Nakano, M. M., Wang, T., Ye, R. W. & Helmann, J. D. Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. J. Bacteriol.186, 4655–4664 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chen, P. R. et al. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nature Chem. Biol.2, 591–595 (2006). ArticleCAS Google Scholar
Jakob, U., Eser, M. & Bardwell, J. C. Redox switch of Hsp33 has a novel zinc-binding motif. J. Biol. Chem.275, 38302–38310 (2000). ArticleCASPubMed Google Scholar
Winter, J., Linke, K., Jatzek, A. & Jakob, U. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol. Cell.17, 381–392 (2005). Demonstration of the physiological role of Hsp33 as an alternate chaperone system replacing DnaK under severe oxidative stress. ArticleCASPubMed Google Scholar
Li, W. et al. The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J. Mol. Biol.333, 461–472 (2003). ArticleCASPubMed Google Scholar
Graf, P. C. et al. Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J. Biol. Chem.279, 20529–20538 (2004). ArticleCASPubMed Google Scholar
Graumann, J. et al. Activation of the redox-regulated molecular chaperone Hsp33 — a two-step mechanism. Structure9, 377–387 (2001). ArticleCASPubMed Google Scholar
Zdanowski, K. et al. Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor. Biochemistry45, 8294–8300 (2006). ArticleCASPubMed Google Scholar
Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J. & Toledano, M. B. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell111, 471–481 (2002). Identification of a GPX-like enzyme as the H2O2receptor that activates Yap1 by oxidation. ArticleCASPubMed Google Scholar
Gulshan, K., Rovinsky, S. A., Coleman, S. T. & Moye-Rowley, W. S. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem.280, 40524–40533 (2005). ArticleCASPubMed Google Scholar
Veal, E. A., Ross, S. J., Malakasi, P., Peacock, E. & Morgan, B. A. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem.278, 30896–30904 (2003). ArticleCASPubMed Google Scholar
Kuge, S., Toda, T., Iizuka, N. & Nomoto, A. Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells3, 521–532 (1998). ArticleCASPubMed Google Scholar
Wood, M. J., Storz, G. & Tjandra, N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature430, 917–921 (2004). Describes the NMR-solved structure of the oxidized form of the Yap1 redox-responsive domain. ArticleCASPubMed Google Scholar
Izawa, S. et al. Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J. Biol. Chem.274, 28459–28465 (1999). ArticleCASPubMed Google Scholar
Delaunay, A., Isnard, A. D. & Toledano, M. B. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J.19, 5157–5166 (2000). ArticleCASPubMedPubMed Central Google Scholar
Carmel-Harel, O. et al. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol.39, 595–605 (2001). ArticleCASPubMed Google Scholar
Yan, C., Lee, L. H. & Davis, L. I. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J.17, 7416–7429 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ikner, A. & Shiozaki, K. Yeast signaling pathways in the oxidative stress response. Mutat. Res.569, 13–27 (2005). ArticleCASPubMed Google Scholar
Quinn, J. et al. Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell.13, 805–816 (2002). ArticleCASPubMedPubMed Central Google Scholar
Vivancos, A. P., Castillo, E. A., Jones, N., Ayte, J. & Hidalgo, E. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol.52, 1427–1435 (2004). ArticleCASPubMed Google Scholar
Bozonet, S. M. et al. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem.280, 23319–23327 (2005). ArticleCASPubMed Google Scholar
Vivancos, A. P. et al. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl Acad. Sci. USA102, 8875–8880 (2005). References 67 and 68 identified the molecular mechanism that restricts the Pap1 response to low levels of H2O2. ArticleCASPubMedPubMed Central Google Scholar
Veal, E. A. et al. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol. Cell15, 129–139 (2004). ArticleCASPubMed Google Scholar
Mason, J. T., Kim, S. K., Knaff, D. B. & Wood, M. J. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway. Biochemistry45, 13409–13417 (2006). ArticleCASPubMed Google Scholar
Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C. & Toledano, M. B. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic. Biol. Med.35, 889–900 (2003). ArticleCASPubMed Google Scholar
Castillo, E. A. et al. Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol. Microbiol.45, 243–254 (2002). ArticleCASPubMed Google Scholar
Miao, Y. et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell18, 2749–2766 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rhee, S. G., Chang, T. S., Bae, Y. S., Lee, S. R. & Kang, S. W. Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol.14, S211–S215 (2003). ArticleCASPubMed Google Scholar
Conway, J. P. & Kinter, M. Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem.281, 27991–28001 (2006). ArticleCASPubMed Google Scholar
Chang, T. S. et al. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem.279, 41975–41984 (2004). ArticleCASPubMed Google Scholar
Choi, M. H. et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature435, 347–353 (2005). Genetic demonstration of the role of peroxiredoxin-II in modulating signalling downstream of the PDGF receptor. ArticleCASPubMed Google Scholar
Chang, T. S. et al. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem.277, 25370–25376 (2002). ArticleCASPubMed Google Scholar
Cao, C., Leng, Y., Huang, W., Liu, X. & Kufe, D. Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J. Biol. Chem.278, 39609–39614 (2003). ArticleCASPubMed Google Scholar
Cao, C., Leng, Y. & Kufe, D. Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J. Biol. Chem.278, 29667–29675 (2003). ArticleCASPubMed Google Scholar
Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med.11, 1306–1313 (2005). Documentation of the antioxidant function of p53. ArticleCASPubMed Google Scholar
St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell127, 397–408 (2006). ArticleCASPubMed Google Scholar
Benassi, B. et al. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol. Cell21, 509–519 (2006). ArticleCASPubMed Google Scholar
Burgering, B. M. & Kops, G. J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci.27, 352–360 (2002). ArticleCASPubMed Google Scholar
Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell128, 325–339 (2007). ArticleCASPubMed Google Scholar
Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J.23, 4802–4812 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lehtinen, M. K. et al. A conserved MST–FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell125, 987–1001 (2006). ArticleCASPubMed Google Scholar
van der Horst A. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem.279, 28873–28879 (2004). ArticleCASPubMed Google Scholar
Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303, 2011–2015 (2004). ArticleCASPubMed Google Scholar
Itoh, K. et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev.13, 76–86 (1999). The identification of KEAP1 as a negative regulator of NRF2. ArticleCASPubMedPubMed Central Google Scholar
Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. & Diehl, J. A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell Biol.24, 8477–8486 (2004). ArticleCASPubMedPubMed Central Google Scholar
Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3–Roc1 ligase. Mol. Cell Biol.25, 162–171 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell Biol.24, 7130–7139 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J. & Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol.24, 10941–10953 (2004). References 91–94 identified KEAP1 as an adaptor of a CUL3-based ubiquitin ligase. ArticleCASPubMedPubMed Central Google Scholar
Dinkova-Kostova, A. T., Holtzclaw, W. D. & Kensler, T. W. The role of Keap1 in cellular protective responses. Chem. Res. Toxicol.18, 1779–1791 (2005). ArticleCASPubMed Google Scholar
Kobayashi, M. & Yamamoto, M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul.46, 113–140 (2006). ArticleCASPubMed Google Scholar
Dinkova-Kostova, A. T. et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl Acad. Sci. USA99, 11908–11913 (2002). The first documentation of the role of Cys residues in the regulation of KEAP1. ArticleCASPubMedPubMed Central Google Scholar
Levonen, A. L. et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J.378, 373–382 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhang, D. D. & Hannink, M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol.23, 8137–8151 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wakabayashi, N. et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nature Genet.35, 238–245 (2003). ArticleCASPubMed Google Scholar
Eggler, A. L., Liu, G., Pezzuto, J. M., van Breemen, R. B. & Mesecar, A. D. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc. Natl Acad. Sci. USA102, 10070–10075 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gao, L. et al. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J. Biol. Chem.282, 2529–2537 (2007). ArticleCASPubMed Google Scholar
Tong, K. I. et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol.26, 2887–2900 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J. & Hannink, M. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J.25, 3605–3617 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, T., Sherratt, P. J., Nioi, P., Yang, C. S. & Pickett, C. B. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J. Biol. Chem.280, 32485–32492 (2005). ArticleCASPubMed Google Scholar
Velichkova, M. & Hasson, T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol. Cell. Biol.25, 4501–4513 (2005). ArticleCASPubMedPubMed Central Google Scholar
Desaint, S., Luriau, S., Aude, J. C., Rousselet, G. & Toledano, M. B. Mammalian antioxidant defenses are not inducible by H2O2 . J. Biol. Chem.279, 31157–31163 (2004). ArticleCASPubMed Google Scholar
Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell121, 667–670 (2005). ArticleCASPubMed Google Scholar
Li, Q. et al. Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol. Cell Biol.26, 140–154 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ushio-Fukai, M. Localizing NADPH oxidase-derived ROS. Sci. STKE349, re8 (2006). Google Scholar
Vilhardt, F. & van Deurs, B. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J.23, 739–748 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miller, E. W., Tulyanthan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol.3, 263–267 (2007). ArticleCAS Google Scholar
Bienert, G. P., Schjoerring, J. K. & Jahn, T. P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta1758, 994–1003 (2006). ArticleCASPubMed Google Scholar
Salmeen, A. et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature423, 769–773 (2003). ArticleCASPubMed Google Scholar
van Montfort, R. L., Congreve, M., Tisi, D., Carr, R. & Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature423, 773–777 (2003). ArticleCASPubMed Google Scholar
Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry37, 5633–5642 (1998). ArticleCASPubMed Google Scholar
Baker, L. M. & Poole, L. B. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential Cys61. J. Biol. Chem.278, 9203–9211 (2003). ArticleCASPubMed Google Scholar
Ghezzi, P. Regulation of protein function by glutathionylation. Free Radic. Res.39, 573–580 (2005). ArticleCASPubMed Google Scholar
Seaver, L. C. & Imlay, J. A. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol.183, 7173–7181 (2001). ArticleCASPubMedPubMed Central Google Scholar
Parsonage, D. et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry44, 10583–10592 (2005). Demonstration that peroxiredoxin oligomerization changes catalytic Cys reactivity and enzymatic activity. ArticleCASPubMed Google Scholar
Woo, H. A. et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science300, 653–656 (2003). Documentation of the reversibility of the Cys sulphinic acid form of peroxiredoxin. ArticleCASPubMed Google Scholar
Rabilloud, T. et al. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem.277, 19396–19401 (2002). ArticleCASPubMed Google Scholar
Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V. & Chumakov, P. M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science304, 596–600 (2004). ArticleCASPubMed Google Scholar
Biteau, B., Labarre, J. & Toledano, M. B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature425, 980–984 (2003). Identification of the enzyme that catalyses Cys sulphinic-acid reduction in peroxiredoxins. ArticleCASPubMed Google Scholar
Yang, K. S. et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem.277, 38029–38036 (2002). ArticleCASPubMed Google Scholar
Buck, V. et al. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell12, 407–419 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, A. N., Lee, A., Place, W. & Shiozaki, K. Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell11, 1169–1181 (2000). ArticleCASPubMedPubMed Central Google Scholar
Galperin, M. Y., Nikolskaya, A. N. & Koonin, E. V. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett.203, 11–21 (2001). ArticleCASPubMed Google Scholar
Gilles-Gonzalez, M. A. & Gonzalez, G. Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J. Inorg. Biochem.99, 1–22 (2005). ArticleCASPubMed Google Scholar
Padmanabhan, B. et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell.21, 689–700 (2006). ArticleCASPubMed Google Scholar