Heterotrimeric G protein activation by G-protein-coupled receptors (original) (raw)
Oldham, W. M. & Hamm, H. E. Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys.39, 117–166 (2006). Comprehensive review of the structure and function of heterotrimeric G proteins throughout the G-protein cycle. ArticleCASPubMed Google Scholar
Sprang, S. R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem.66, 639–678 (1997). ArticleCASPubMed Google Scholar
Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics88, 263–273 (2006). ArticleCASPubMed Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov.1, 727–730 (2002). ArticleCAS Google Scholar
Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol.63, 1256–1272 (2003). ArticleCASPubMed Google Scholar
Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther.103, 21–80 (2004). Comprehensive review of G-protein-coupled receptor structure and function. ArticleCASPubMed Google Scholar
Ballesteros, J. A., Shi, L. & Javitch, J. A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors. Mol. Pharmacol.60, 1–19 (2001). ArticleCASPubMed Google Scholar
Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science289, 739–745 (2000). First crystal structure of a G-protein-coupled receptor. ArticleCASPubMed Google Scholar
Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K. & Stenkamp, R. E. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry40, 7761–7772 (2001). ArticleCASPubMed Google Scholar
Okada, T. et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl Acad. Sci. USA99, 5982–5987 (2002). ArticleCASPubMedPubMed Central Google Scholar
Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol.342, 571–583 (2004). ArticleCASPubMed Google Scholar
Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol.343, 1409–1438 (2004). ArticleCASPubMed Google Scholar
Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA103, 16123–16128 (2006). Recently described structure of a photostable rhodopsin intermediate. ArticleCASPubMedPubMed Central Google Scholar
Qanbar, R. & Bouvier, M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther.97, 1–33 (2003). ArticleCASPubMed Google Scholar
Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature407, 971–977 (2000). ArticleCASPubMed Google Scholar
Stacey, M., Lin, H. H., Gordon, S. & McKnight, A. J. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem. Sci.25, 284–289 (2000). ArticleCASPubMed Google Scholar
Dann, C. E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature412, 86–90 (2001). ArticleCASPubMed Google Scholar
Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science252, 802–808 (1991). ArticleCASPubMed Google Scholar
Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature369, 621–628 (1994). First description of nucleotide-dependent conformational changes in Gα. ArticleCASPubMed Google Scholar
Mixon, M. B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science270, 954–960 (1995). ArticleCASPubMed Google Scholar
Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature366, 654–663 (1993). First description of the three-dimensional structure of a G-proteinα-subunit. ArticleCASPubMed Google Scholar
Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science265, 1405–1412 (1994). ArticleCASPubMed Google Scholar
Smotrys, J. E. & Linder, M. E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem.73, 559–587 (2004). ArticleCASPubMed Google Scholar
Chen, C. A. & Manning, D. R. Regulation of G proteins by covalent modification. Oncogene20, 1643–1652 (2001). ArticleCASPubMed Google Scholar
Wall, M. A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell83, 1047–1058 (1995). First structure of a G-protein heterotrimer, which provided the structural basis for Gα–Gβinteractions. ArticleCASPubMed Google Scholar
Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E. & Sigler, P. B. Crystal structure of a G-protein βγ dimer at 2.1 Å resolution. Nature379, 369–374 (1996). ArticleCASPubMed Google Scholar
Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem.65, 241–269 (1996). ArticleCASPubMed Google Scholar
Schmidt, C. J., Thomas, T. C., Levine, M. A. & Neer, E. J. Specificity of G protein β and γ subunit interactions. J. Biol. Chem.267, 13807–13810 (1992). CASPubMed Google Scholar
Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol.37, 167–203 (1997). ArticleCASPubMed Google Scholar
Graf, R. et al. Studies on the interaction of α subunits of GTP-binding proteins with βγ dimers. Eur. J. Biochem.210, 609–619 (1992). ArticleCASPubMed Google Scholar
Lambright, D. G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature379, 311–319 (1996). ArticleCASPubMed Google Scholar
Seitz, H. R. et al. Molecular determinants of the reversible membrane anchorage of the G-protein transducin. Biochemistry38, 7950–7960 (1999). ArticleCASPubMed Google Scholar
Iiri, T., Backlund, P. S. Jr, Jones, T. L., Wedegaertner, P. B. & Bourne, H. R. Reciprocal regulation of Gsα by palmitate and the βγ subunit. Proc. Natl Acad. Sci. USA93, 14592–14597 (1996). ArticleCASPubMedPubMed Central Google Scholar
Iniguez-Lluhi, J. A., Simon, M. I., Robishaw, J. D. & Gilman, A. G. G protein βγ subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of γ. J. Biol. Chem.267, 23409–23417 (1992). CASPubMed Google Scholar
Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science274, 768–770 (1996). SDSL study of the structural changes in rhodopsin on photoactivation. ArticleCASPubMed Google Scholar
Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature383, 347–350 (1996). ArticleCASPubMed Google Scholar
Jensen, A. D. et al. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the β2 adrenergic receptor mapped by site-selective fluorescent labeling. J. Biol. Chem.276, 9279–9290 (2001). ArticleCASPubMed Google Scholar
Huang, W., Osman, R. & Gershengorn, M. C. Agonist-induced conformational changes in thyrotropin-releasing hormone receptor type I: disulfide cross-linking and molecular modeling approaches. Biochemistry44, 2419–2431 (2005). ArticleCASPubMed Google Scholar
Ward, S. D. et al. Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor. Biochemistry45, 676–685 (2006). ArticleCASPubMed Google Scholar
Palczewski, K. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem.75, 743–767 (2006). This study, together with reference 66, describes the use of chemical cross-linking reagents to define point-to-point interactions between rhodopsin and transducin. ArticleCASPubMedPubMed Central Google Scholar
Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nature Biotechnol.21, 807–812 (2003). ArticleCAS Google Scholar
Gether, U., Asmar, F., Meinild, A. K. & Rasmussen, S. G. Structural basis for activation of G-protein-coupled receptors. Pharmacol. Toxicol.91, 304–312 (2002). ArticleCASPubMed Google Scholar
Tolkovsky, A. M. & Levitzki, A. Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry17, 3795 (1978). ArticleCASPubMed Google Scholar
Gales, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nature Struct. Mol. Biol.13, 778–786 (2006). ArticleCAS Google Scholar
Hein, P., Frank, M., Hoffmann, C., Lohse, M. J. & Bunemann, M. Dynamics of receptor/G protein coupling in living cells. EMBO J.24, 4106–4114 (2005). ArticleCASPubMedPubMed Central Google Scholar
Alves, I. D. et al. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Biophys. J.88, 198–210 (2005). ArticleCASPubMed Google Scholar
Alves, I. D. et al. Direct observation of G-protein binding to the human δ-opioid receptor using plasmon-waveguide resonance spectroscopy. J. Biol. Chem.278, 48890–48897 (2003). ArticleCASPubMed Google Scholar
Liebman, P. A. & Sitaramayya, A. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Adv. Cyclic Nucleotide Protein Phosphorylation Res.17, 215–225 (1984). CASPubMed Google Scholar
Hamm, H. E., Deretic, D., Hofmann, K. P., Schleicher, A. & Kohl, B. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin. J. Biol. Chem.262, 10831–10838 (1987). CASPubMed Google Scholar
Janz, J. M. & Farrens, D. L. Rhodopsin activation exposes a key hydrophobic binding site for the transducin α-subunit C terminus. J. Biol. Chem.279, 29767–29773 (2004). Uses fluorescence spectroscopy to identify the putative binding site for the GαC-terminal peptide as the inner face of transmembrane helix 6. ArticleCASPubMed Google Scholar
Dratz, E. A. et al. NMR structure of a receptor-bound G-protein peptide. Nature363, 276–281 (1993). ArticleCASPubMed Google Scholar
Kisselev, O. G. et al. Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc. Natl Acad. Sci. USA95, 4270–4275 (1998). ArticleCASPubMedPubMed Central Google Scholar
Koenig, B. W. et al. Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. J. Mol. Biol.322, 441–461 (2002). ArticleCASPubMed Google Scholar
Hamm, H. E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science241, 832–835 (1988). First evidence that a peptide corresponding to the C terminus of Gαcan bind a receptor, competing with the heterotrimeric G protein for binding. ArticleCASPubMed Google Scholar
Aris, L. et al. Structural requirements for the stabilization of metarhodopsin II by the C terminus of the α subunit of transducin. J. Biol. Chem.276, 2333–2339 (2001). ArticleCASPubMed Google Scholar
Martin, E. L., Rens-Domiano, S., Schatz, P. J. & Hamm, H. E. Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem.271, 361–366 (1996). ArticleCASPubMed Google Scholar
Sullivan, K. A. et al. Identification of receptor contact site involved in receptor-G protein coupling. Nature330, 758–760 (1987). ArticleCASPubMed Google Scholar
Schwindinger, W. F., Miric, A., Zimmerman, D. & Levine, M. A. A Novel Gsα mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase. J. Biol. Chem.269, 25387–25391 (1994). CASPubMed Google Scholar
Osawa, S. & Weiss, E. R. The effect of carboxyl-terminal mutagenesis of Gtα on rhodopsin and guanine nucleotide binding. J. Biol. Chem.270, 31052–31058 (1995). ArticleCASPubMed Google Scholar
West, R. E. Jr, Moss, J., Vaughan, M., Liu, T. & Liu, T. Y. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J. Biol. Chem.260, 14428–14430 (1985). CASPubMed Google Scholar
Onrust, R. et al. Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science275, 381–384 (1997). ArticleCASPubMed Google Scholar
Bae, H. et al. Molecular determinants of selectivity in 5-hydroxytryptamine1B receptor-G protein interactions. J. Biol. Chem.272, 32071–32077 (1997). ArticleCASPubMed Google Scholar
Bae, H., Cabrera-Vera, T. M., Depree, K. M., Graber, S. G. & Hamm, H. E. Two amino acids within the α4 helix of Gαi1 mediate coupling with 5-hydroxytryptamine1B receptors. J. Biol. Chem.274, 14963–14971 (1999). ArticleCASPubMed Google Scholar
Lichtarge, O., Bourne, H. R. & Cohen, F. E. Evolutionarily conserved Gαβγ binding surfaces support a model of the G protein-receptor complex. Proc. Natl Acad. Sci. USA93, 7507–7511 (1996). ArticleCASPubMedPubMed Central Google Scholar
Cai, K., Itoh, Y. & Khorana, H. G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc. Natl Acad. Sci. USA98, 4877–4882 (2001). This study, together with reference 41, describes the use of chemical cross-linking reagents to define point-to-point interactions between rhodopsin and transducin. ArticleCASPubMedPubMed Central Google Scholar
Mazzoni, M. R. & Hamm, H. E. Interaction of transducin with light-activated rhodopsin protects it from proteolytic digestion by trypsin. J. Biol. Chem.271, 30034–30040 (1996). ArticleCASPubMed Google Scholar
Grishina, G. & Berlot, C. H. A surface-exposed region of Gsα in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol. Pharmacol.57, 1081–1092 (2000). CASPubMed Google Scholar
Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., Remmers, A. E. & Neubig, R. R. Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβ and the amino terminus of Gα. J. Biol. Chem.269, 27618–27624 (1994). CASPubMed Google Scholar
Itoh, Y., Cai, K. & Khorana, H. G. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc. Natl Acad. Sci. USA98, 4883–4887 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ho, M. K. & Wong, Y. H. The amino terminus of Gαz is required for receptor recognition, whereas its α4/β6 loop is essential for inhibition of adenylyl cyclase. Mol. Pharmacol.58, 993–1000 (2000). ArticleCASPubMed Google Scholar
Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., VanDort, M. & Neubig, R. R. Receptor and membrane interaction sites on Gβ. A receptor-derived peptide binds to the carboxyl terminus. J. Biol. Chem.271, 3336–3339 (1996). ArticleCASPubMed Google Scholar
Ford, C. E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science280, 1271–1274 (1998). ArticleCASPubMed Google Scholar
Kisselev, O., Pronin, A., Ermolaeva, M. & Gautam, N. Receptor–G protein coupling is established by a potential conformational switch in the βγ complex. Proc. Natl Acad. Sci. USA92, 9102–9106 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kisselev, O. G. & Downs, M. A. Rhodopsin controls a conformational switch on the transducin γ subunit. Structure11, 367–373 (2003). ArticleCASPubMed Google Scholar
Azpiazu, I. et al. A G protein γ subunit-specific peptide inhibits muscarinic receptor signaling. J. Biol. Chem.274, 35305–35308 (1999). ArticleCASPubMed Google Scholar
Javitch, J. A. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol. Pharmacol.66, 1077–1082 (2004). ArticleCASPubMed Google Scholar
Milligan, G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol.66, 1–7 (2004). ArticleCASPubMed Google Scholar
Baneres, J. L. & Parello, J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol.329, 815–829 (2003). ArticleCASPubMed Google Scholar
Fotiadis, D. et al. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature421, 127–128 (2003). ArticleCASPubMed Google Scholar
Pin, J. P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther.98, 325–354 (2003). ArticleCASPubMed Google Scholar
George, S. R., O'Dowd, B. F. & Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Rev. Drug Discov.1, 808–820 (2002). ArticleCAS Google Scholar
Goudet, C. et al. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem.280, 24380–24385 (2005). ArticleCASPubMed Google Scholar
Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J.24, 499–509 (2005). ArticleCASPubMedPubMed Central Google Scholar
White, J. F. et al. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc. Natl Acad. Sci. USA104, 12199–12204 (2007). ArticleCASPubMedPubMed Central Google Scholar
Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA104, 7682–7687 (2007). ArticleCASPubMedPubMed Central Google Scholar
Herrmann, R. et al. Sequence of interactions in receptor-G protein coupling. J. Biol. Chem.279, 24283–24290 (2004). ArticleCASPubMed Google Scholar
Herrmann, R., Heck, M., Henklein, P., Hofmann, K. P. & Ernst, O. P. Signal transfer from GPCRs to G proteins: role of the Gα N-terminal region in rhodopsin-transducin coupling. J. Biol. Chem.281, 30234–30241 (2006). ArticleCASPubMed Google Scholar
Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature363, 274–276 (1993). ArticleCASPubMed Google Scholar
Blahos, J. et al. Extreme C terminus of G protein α-subunits contains a site that discriminates between Gi-coupled metabotropic glutamate receptors. J. Biol. Chem.273, 25765–25769 (1998). ArticleCASPubMed Google Scholar
Kostenis, E., Gomeza, J., Lerche, C. & Wess, J. Genetic analysis of receptor-Gαq coupling selectivity. J. Biol. Chem.272, 23675–23681 (1997). ArticleCASPubMed Google Scholar
Conklin, B. R. et al. Carboxyl-terminal mutations of Gqα and Gsα that alter the fidelity of receptor activation. Mol. Pharmacol.50, 885–890 (1996). CASPubMed Google Scholar
Natochin, M., Muradov, K. G., McEntaffer, R. L. & Artemyev, N. O. Rhodopsin recognition by mutant Gsα containing C-terminal residues of transducin. J. Biol. Chem.275, 2669–2675 (2000). ArticleCASPubMed Google Scholar
Kostenis, E., Conklin, B. R. & Wess, J. Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant Gαq subunits. Biochemistry36, 1487–1495 (1997). ArticleCASPubMed Google Scholar
Kostenis, E., Degtyarev, M. Y., Conklin, B. R. & Wess, J. The N-terminal extension of Gαq is critical for constraining the selectivity of receptor coupling. J. Biol. Chem.272, 19107–19110 (1997). ArticleCASPubMed Google Scholar
Kostenis, E., Zeng, F. Y. & Wess, J. Functional characterization of a series of mutant G protein αq subunits displaying promiscuous receptor coupling properties. J. Biol. Chem.273, 17886–17892 (1998). ArticleCASPubMed Google Scholar
Blahos, J. et al. A novel site on the Gα-protein that recognizes heptahelical receptors. J. Biol. Chem.276, 3262–3269 (2001). ArticleCASPubMed Google Scholar
Lee, C. H., Katz, A. & Simon, M. I. Multiple regions of Gα16 contribute to the specificity of activation by the C5a receptor. Mol. Pharmacol.47, 218–223 (1995). CASPubMed Google Scholar
Slessareva, J. E. et al. Closely related G-protein-coupled receptors use multiple and distinct domains on G-protein α-subunits for selective coupling. J. Biol. Chem.278, 50530–50536 (2003). ArticleCASPubMed Google Scholar
Heydorn, A. et al. Identification of a novel site within G protein α subunits important for specificity of receptor–G protein interaction. Mol. Pharmacol.66, 250–259 (2004). ArticleCASPubMed Google Scholar
Kostenis, E. et al. A highly conserved glycine within linker I and the extreme C terminus of G protein α subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity. J. Pharmacol. Exp. Ther.313, 78–87 (2005). ArticleCASPubMed Google Scholar
McIntire, W. E., MacCleery, G. & Garrison, J. C. The G protein β subunit is a determinant in the coupling of Gs to the β1-adrenergic and A2a adenosine receptors. J. Biol. Chem.276, 15801–15809 (2001). ArticleCASPubMed Google Scholar
Hou, Y., Azpiazu, I., Smrcka, A. & Gautam, N. Selective role of G protein γ subunits in receptor interaction. J. Biol. Chem.275, 38961–38964 (2000). ArticleCASPubMed Google Scholar
Jian, X. et al. Gβγ affinity for bovine rhodopsin is determined by the carboxyl-terminal sequences of the γ subunit. J. Biol. Chem.276, 48518–48525 (2001). ArticleCASPubMed Google Scholar
Myung, C. S. et al. Regions in the G protein γ subunit important for interaction with receptors and effectors. Mol. Pharmacol.69, 877–887 (2005). PubMed Google Scholar
Yasuda, H., Lindorfer, M. A., Woodfork, K. A., Fletcher, J. E. & Garrison, J. C. Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. J. Biol. Chem.271, 18588–18595 (1996). ArticleCASPubMed Google Scholar
Wess, J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther.80, 231–264 (1998). ArticleCASPubMed Google Scholar
Hedin, K. E., Duerson, K. & Clapham, D. E. Specificity of receptor-G protein interactions: searching for the structure behind the signal. Cell. Signal.5, 505–518 (1993). ArticleCASPubMed Google Scholar
Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J.11, 346–354 (1997). ArticleCASPubMed Google Scholar
Gilchrist, R. L., Ryu, K. S., Ji, I. & Ji, T. H. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J. Biol. Chem.271, 19283–19287 (1996). ArticleCASPubMed Google Scholar
Perez, D. M. et al. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol. Pharmacol.49, 112–122 (1996). CASPubMed Google Scholar
Kenakin, T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci.24, 346–354 (2003). ArticleCASPubMed Google Scholar
Perez, D. M. & Karnik, S. S. Multiple signaling states of G-protein-coupled receptors. Pharmacol. Rev.57, 147–161 (2005). ArticleCASPubMed Google Scholar
Mukhopadhyay, S. & Howlett, A. C. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol. Pharmacol.67, 2016–2024 (2005). ArticleCASPubMed Google Scholar
McLaughlin, J. N. et al. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J. Biol. Chem.280, 25048–25059 (2005). ArticleCASPubMed Google Scholar
Rodbell, M., Krans, H. M., Pohl, S. L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem.246, 1872–1876 (1971). CASPubMed Google Scholar
Emeis, D., Kuhn, H., Reichert, J. & Hofmann, K. P. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett.143, 29–34 (1982). ArticleCASPubMed Google Scholar
Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. Eur. J. Biochem.184, 687–698 (1989). ArticleCASPubMed Google Scholar
Bourne, H. R. How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol.9, 134–142 (1997). ArticleCASPubMed Google Scholar
Slusarz, R. & Ciarkowski, J. Interaction of class A G protein-coupled receptors with G proteins. Acta Biochim. Pol.51, 129–136 (2004). CASPubMed Google Scholar
Ciarkowski, J., Witt, M. & Slusarz, R. A hypothesis for GPCR activation. J. Mol. Model.11, 407–415 (2005). ArticleCASPubMed Google Scholar
Iiri, T., Herzmark, P., Nakamoto, J. M., van Dop, C. & Bourne, H. R. Rapid GDP release from Gsa in patients with gain and loss of endocrine function. Nature371, 164–168 (1994). ArticleCASPubMed Google Scholar
Posner, B. A., Mixon, M. B., Wall, M. A., Sprang, S. R. & Gilman, A. G. The A326S mutant of Giα1 as an approximation of the receptor-bound state. J. Biol. Chem.273, 21752–21758 (1998). ArticleCASPubMed Google Scholar
Thomas, T. C., Schmidt, C. J. & Neer, E. J. G-protein αo subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. Natl Acad. Sci. USA90, 10295–10298 (1993). ArticleCASPubMedPubMed Central Google Scholar
Marin, E. P., Krishna, A. G. & Sakmar, T. P. Rapid activation of transducin by mutations distant from the nucleotide-binding site. Evidence for a mechanistic model of receptor-catalyzed nucleotide exchange by G proteins. J. Biol. Chem.276, 27400–27405 (2001). ArticleCASPubMed Google Scholar
Marin, E. P., Krishna, A. G. & Sakmar, T. P. Disruption of the α5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry41, 6988–6994 (2002). ArticleCASPubMed Google Scholar
Natochin, M., Moussaif, M. & Artemyev, N. O. Probing the mechanism of rhodopsin-catalyzed transducin activation. J. Neurochem.77, 202–210 (2001). ArticleCASPubMed Google Scholar
Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Struct. Mol. Biol.13, 772–777 (2006). SDSL study of Gα demonstrating that a rotation-translation of the α5 helix couples receptor binding to GDP release. ArticleCAS Google Scholar
Ceruso, M. A., Periole, X. & Weinstein, H. Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange. J. Mol. Biol.338, 469–481 (2004). ArticleCASPubMed Google Scholar
Johnston, C. A. & Siderovski, D. P. Structural basis for nucleotide exchange on Gai subunits and receptor coupling specificity. Proc. Natl Acad. Sci. USA104, 2001–2006 (2007). Structure of Gai1bound to peptides that accelerate nucleotide exchange as a possible mimic of the receptor-bound conformation. ArticleCASPubMedPubMed Central Google Scholar
Nanoff, C. et al. The carboxyl terminus of the Gα-subunit is the latch for triggered activation of heterotrimeric G proteins. Mol. Pharmacol.69, 397–405 (2006). CASPubMed Google Scholar
Grishina, G. & Berlot, C. H. Mutations at the domain interface of Gsa impair receptor-mediated activation by altering receptor and guanine nucleotide binding. J. Biol. Chem.273, 15053–15060 (1998). ArticleCASPubMed Google Scholar
Pereira, R. & Cerione, R. A. A switch 3 point mutation in the α subunit of transducin yields a unique dominant-negative inhibitor. J. Biol. Chem.280, 35696–35703 (2005). ArticleCASPubMed Google Scholar
Barren, B., Natochin, M. & Artemyev, N. O. Mutation R238E in transducin-α yields a GTPase and effector-deficient, but not dominant-negative, G-protein α-subunit. Mol. Vis.12, 492–498 (2006). CASPubMed Google Scholar
Denker, B. M., Boutin, P. M. & Neer, E. J. Interactions between the amino- and carboxyl-terminal regions of Gα subunits: analysis of mutated Gαo/Gαi2 chimeras. Biochemistry34, 5544–5553 (1995). ArticleCASPubMed Google Scholar
Denker, B. M., Schmidt, C. J. & Neer, E. J. Promotion of the GTP-liganded state of the Goα protein by deletion of the C terminus. J. Biol. Chem.267, 9998–10002 (1992). CASPubMed Google Scholar
Iiri, T., Farfel, Z. & Bourne, H. R. G-protein diseases furnish a model for the turn-on switch. Nature394, 35–38 (1998). ArticleCASPubMed Google Scholar
Rondard, P. et al. Mutant G protein α subunit activated by Gβγ: a model for receptor activation? Proc. Natl Acad. Sci. USA98, 6150–6155 (2001). Description and scientific support of the lever-arm hypothesis of Gβγ-mediated GDP release. ArticleCASPubMedPubMed Central Google Scholar
Cherfils, J. & Chabre, M. Activation of G-protein Gα subunits by receptors through Gα–Gβ and Gα–Gγ interactions. Trends Biochem. Sci.28, 13–17 (2003). Description of the gear-shift model for Gβγ-mediated GDP release. ArticleCASPubMed Google Scholar
Azpiazu, I. & Gautam, N. G protein γ subunit interaction with a receptor regulates receptor-stimulated nucleotide exchange. J. Biol. Chem.276, 41742–41747 (2001). ArticleCASPubMed Google Scholar
Johnston, C. A. et al. Structure of Gαi1 bound to a GDP-selective peptide provides insight into guanine nucleotide exchange. Structure13, 1069–1080 (2005). ArticleCASPubMedPubMed Central Google Scholar
Medkova, M., Preininger, A. M., Yu, N. J., Hubbell, W. L. & Hamm, H. E. Conformational changes in the amino-terminal helix of the G protein αi1 following dissociation from Gβγ subunit and activation. Biochemistry41, 9962–9972 (2002). ArticleCASPubMed Google Scholar
Van Eps, N., Oldham, W. M., Hamm, H. E. & Hubbell, W. L. Structural and dynamical changes in an α-subunit of a heterotrimeric G protein along the activation pathway. Proc. Natl Acad. Sci. USA103, 16194–16199 (2006). ArticleCASPubMedPubMed Central Google Scholar
Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc. Natl Acad. Sci. USA104, 7927–7932 (2007). ArticleCASPubMedPubMed Central Google Scholar
Warner, D. R., Weng, G., Yu, S., Matalon, R. & Weinstein, L. S. A novel mutation in the switch 3 region of Gsα in a patient with Albright hereditary osteodystrophy impairs GDP binding and receptor activation. J. Biol. Chem.273, 23976–23983 (1998). ArticleCASPubMed Google Scholar
Warner, D. R. & Weinstein, L. S. A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein α-subunit with impaired receptor-mediated activation because of elevated GTPase activity. Proc. Natl Acad. Sci. USA96, 4268–4272 (1999). ArticleCASPubMedPubMed Central Google Scholar
Remmers, A. E., Engel, C., Liu, M. & Neubig, R. R. Interdomain interactions regulate GDP release from heterotrimeric G proteins. Biochemistry38, 13795–13800 (1999). ArticleCASPubMed Google Scholar
Marin, E. P. et al. The function of interdomain interactions in controlling nucleotide exchange rates in transducin. J. Biol. Chem.276, 23873–23880 (2001). ArticleCASPubMed Google Scholar
Majumdar, S., Ramachandran, S. & Cerione, R. A. Perturbing the linker regions of the α-subunit of transducin: a new class of constitutively active GTP-binding proteins. J. Biol. Chem.279, 40137–40145 (2004). ArticleCASPubMed Google Scholar
Birnbaumer, L., Pohl, S. L., Rodbell, M. & Sundby, F. The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J. Biol. Chem.247, 2038–2043 (1972). CASPubMed Google Scholar
Heck, M. & Hofmann, K. P. Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation. Initial rate analysis based on a double displacement mechanism. J. Biol. Chem.276, 10000–10009 (2001). ArticleCASPubMed Google Scholar
Bunemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA100, 16077–16082 (2003). ArticlePubMedCASPubMed Central Google Scholar
Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nature Methods2, 177–184 (2005). ArticleCASPubMed Google Scholar
Digby, G. J., Lober, R. M., Sethi, P. R. & Lambert, N. A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl Acad. Sci. USA103, 17789–17794 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hein, P. et al. GS activation is time-limiting in initiating receptor-mediated signaling. J. Biol. Chem.281, 33345–33351 (2006). ArticleCASPubMed Google Scholar
Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis by Gq promoted by receptor and GTPase-activating proteins. Proc. Natl Acad. Sci. USA96, 9539–9544 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science310, 1686–1690 (2005). ArticleCASPubMed Google Scholar
Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature409, 1071–1077 (2001). ArticleCASPubMed Google Scholar