Building the cell: design principles of cellular architecture (original) (raw)
Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic β cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA98, 2399–2406 (2001). CASPubMedPubMed Central Google Scholar
Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci.119, 2863–2869 (2006). CASPubMed Google Scholar
Karsenti, E. Self-organization in cell biology: a brief history. Nature Rev. Mol. Cell Biol.9, 255–262 (2008). CAS Google Scholar
West, G. B., Brown, J. H. & Enquist, B. J. in Scaling in Biology (eds J. H. Brown & G. B. West) (Oxford University Press, New York, 2000). Google Scholar
Wheatley, D. N. & Bowser, S. S. Length control of primary cilia: analysis of monociliate and multiciliate PtK1 cells. Biol. Cell92, 573–582 (2000). CASPubMed Google Scholar
Tam, L. W., Wilson, N. F. & Lefebvre, P. A. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J. Cell Biol.176, 819–829 (2007). CASPubMedPubMed Central Google Scholar
Yan, M., Rayapuram, N. & Subramani, S. The control of peroxisome number and size during division and proliferation. Curr. Opin. Cell Biol.17, 376–383 (2005). CASPubMed Google Scholar
Guo, Y. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature453, 657–661 (2008). CASPubMedPubMed Central Google Scholar
Katsura, I. Determination of bacteriophage λ tail length by a protein ruler. Nature327, 73–75 (1987). Demonstrates that the length of a biological structure can be determined by the length of a single protein, which apparently acts as a ruler during assembly. CASPubMed Google Scholar
Shibata, S. et al. FliK regulates flagellar hook length as an internal ruler. Mol. Microbiol.64, 1404–1415 (2007). CASPubMed Google Scholar
Journet, L., Agrain, C., Broz, P. & Cornelis, G. R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science302, 1757–1760 (2003). CASPubMed Google Scholar
Fowler, V. M., McKeown, C. R. & Fischer, R. S. Nebulin: does it measure up as a ruler? Curr. Biol.16, R18–R20 (2006). CASPubMed Google Scholar
Stephens, R. E. Quantal tektin synthesis and ciliary length in sea-urchin embryos. J. Cell Sci.92, 403–413 (1989). CASPubMed Google Scholar
Rosenbaum, J. L., Moulder, J. E. & Ringo, D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J. Cell Biol.41, 600–619 (1969). CASPubMedPubMed Central Google Scholar
Lefebvre, P. A. & Rosenbaum, J. L. Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Ann. Rev. Cell Biol.2, 517–546 (1986). CASPubMed Google Scholar
Marshall, W. F., Qin, H., Rodrigo Brenni, M. & Rosenbaum, J. L. Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol. Biol. Cell16, 270–278 (2005). CASPubMedPubMed Central Google Scholar
Sriburi, R., Jackowski, S., Mori, K. & Brewer, J. W. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol.167, 35–41 (2004). CASPubMedPubMed Central Google Scholar
Cox, J. S., Chapman, R. E. & Walter, P. The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell8, 1805–1814 (1997). CASPubMedPubMed Central Google Scholar
Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol.4, e413 (2006). Google Scholar
Coyne, B. & Rosenbaum, J. L. Flagellar elongation and shortening in Chlamydomonas. II. Re-utilization of flagellar proteins. J. Cell Biol.47, 777–781 (1970). CASPubMedPubMed Central Google Scholar
Marshall, W. F. & Rosenbaum, J. L. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol.155, 405–414 (2001). Presents a simple size-control mechanism in which size-dependent assembly counteracts size-independent disassembly, with the two processes balancing only at a unique value for size. CASPubMedPubMed Central Google Scholar
Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol.3, 813–825 (2002). CAS Google Scholar
Tyska, M. J. & Mooseker, M. S. MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys. J.82, 1869–1883 (2002). CASPubMedPubMed Central Google Scholar
Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol.164, 887–897 (2004). CASPubMedPubMed Central Google Scholar
Keener, J. How Salmonella typhimurium measures the length of flagellar filaments. Bull. Math. Biol.68, 1761–1778 (2006). CASPubMed Google Scholar
Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biol.8, 957–962 (2006). CASPubMed Google Scholar
Burbank, K. S., Mitchison, T. J. & Fisher, D. S. Slide-and-cluster models for spindle assembly. Curr. Biol.17, 1373–1383 (2007). CASPubMed Google Scholar
Hennis, A. S. & Birky, C. W. Stochastic partitioning of chloroplasts at cell division in the alga Olisthodiscus, and compensating control of chloroplast replication. J. Cell Sci.70, 1–15 (1984). CASPubMed Google Scholar
Marshall, W. F. Stability and robustness of an organelle number control system: modeling and measuring homeostatic regulation of centriole abundance. Biophys. J.93, 1818–1833 (2007). CASPubMedPubMed Central Google Scholar
Marshall, W. F., Vucica, Y. & Rosenbaum, J. L. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr. Biol.11, 308–317 (2001). CASPubMed Google Scholar
La Terra, S. et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol.168, 713–722 (2005). CASPubMedPubMed Central Google Scholar
Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. Quart. Rev. Biophys.34, 1–59 (2001). CAS Google Scholar
Umen, J. G. The elusive sizer. Curr. Opin. Cell Biol.17, 435–441 (2005). CASPubMed Google Scholar
Bergeland, T., Widerberg, J., Bakke, O. & Nordeng, T. W. Mitotic partitioning of endosomes and lysosomes. Curr. Biol.11, 644–651 (2001). CASPubMed Google Scholar
Ludford, R. J. & Gatenby, J. B. Dictyokinesis in germ cells. Proc. R. Soc. Lond., B, Biol. Sci.92, 235–244 (1921). Google Scholar
Lucocq, J. M. & Warren, G. Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLA cells. EMBO J.6, 3239–3246 (1987). CASPubMedPubMed Central Google Scholar
Warren, G. Membrane partitioning during cell division. Annu. Rev. Biochem.62, 323–348 (1993). CASPubMed Google Scholar
Farré, J. C. & Subramani, S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol.14, 515–523 (2004). PubMed Google Scholar
Morgan, T. H. Regeneration of proportionate structures in Stentor. Biol. Bull.2, 311–328 (1901). Google Scholar
Bakowska, J. & Jerka-Dziadosz, M. Ultrastructural aspect of size dependent regulation of surface pattern of complex ciliary organelle in a protozoan ciliate. J. Embryol. Exp. Morph.59, 355–375 (1980). CASPubMed Google Scholar
Malawista, S. E. & Van Blaricom, G. Cytoplasts made from human blood polymorphonuclear leukocytes with or without heat: preservation of both motile function and respiratory burst oxidase activity. Proc. Natl Acad. Sci. USA84, 454–458 (1987). CASPubMedPubMed Central Google Scholar
Verkhkovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol.9, 11–20 (1999). Google Scholar
Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science299, 1231–1235 (2003). Demonstrates a simple self-organizing polarity system by combining modelling and experimental measurements. CASPubMed Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell114, 201–214 (2003). CASPubMed Google Scholar
Yam, P. T. et al. Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol.178, 1207–1221 (2007). CASPubMedPubMed Central Google Scholar
Ozbudak, E. M., Becskei, A. & van Oudenaarden, A. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell9, 565–571 (2005). CASPubMed Google Scholar
Jones, C. et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genet.40, 69–77 (2008). CASPubMed Google Scholar
Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature423, 173–177 (2003). CASPubMed Google Scholar
Kupfer, A., Dennert, G. & Singer, S. J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl Acad. Sci. USA80, 7224–7228 (1983). CASPubMedPubMed Central Google Scholar
Sanchez-Madrid, F. & Serrador, J. M. Mitochondrial redistribution: adding new players to the chemotaxis game. Trends Immunol.38, 193–196 (2007). Google Scholar
Kupfer, A., Louvard, D. & Singer, S. J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc. Natl Acad. Sci. USA79, 2603–2607 (1982). CASPubMedPubMed Central Google Scholar
Zmuda, J. F. & Rivas, R. J. The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell. Motil. Cytoskel.41, 18–38 (1998). CAS Google Scholar
Agutter, P. S. & Wheatley, D. N. Random walks and cell size. Bioessays22, 1018–1023 (2000). CASPubMed Google Scholar
Verkman, A. S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci.27, 27–33 (2002). CASPubMed Google Scholar
Sun, J. & Weinstein, H. Toward realistic modeling of dynamic processes in cell signaling: quantification of macromolecular crowding effects. J. Chem. Phys.127, 155105 (2007). PubMed Google Scholar
Ridgway, D. et al. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys. J.94, 3748–3759 (2008). CASPubMedPubMed Central Google Scholar
Prodon, F., Sardet, C. & Nishida, H. Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER–mRNA domain along the a–v axis in ascidian oocytes. Dev. Biol.313, 682–699 (2008). CASPubMed Google Scholar
Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell121, 451–463 (2005). CASPubMed Google Scholar
Carvalho, P., Tirnauer, J. S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol.13, 229–237 (2003). CASPubMed Google Scholar
Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol.16, 106–112 (2004). CASPubMed Google Scholar
Wu, X., Xiang, X. & Hammer, J. A. Motor proteins at the microtubule plus-end. Trends Cell Biol.16, 135–143 (2006). PubMed Google Scholar
Pearson, C. G. & Bloom, K. Dynamic microtubules lead the way for spindle positioning. Nature Rev. Mol. Cell Biol.5, 481–492 (2004). CAS Google Scholar
Grill, S. W. & Hyman, A. A. Spindle positioning by cortical pulling forces. Dev. Cell8, 461–465 (2005). CASPubMed Google Scholar
Watanabe, T., Noritake, J. & Kaibuchi, K. Regulation of microtubules in cell migration. Trends Cell Biol.15, 76–83 (2005). CASPubMed Google Scholar
Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol.4, E236–E242 (2002). CASPubMed Google Scholar
Rios, R. M. & Bornens, M. The Golgi apparatus at the cell centre. Curr. Opin. Cell Biol.15, 60–66 (2003). CASPubMed Google Scholar
Chabin-Brion, K. et al. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell12, 2047–2060 (2001). CASPubMedPubMed Central Google Scholar
Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the _trans_-Golgi network. Dev. Cell12, 917–930 (2007). CASPubMedPubMed Central Google Scholar
Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol.16, 2259–2264 (2006). CASPubMed Google Scholar
Feldman, J. L., Geimer, S. & Marshall, W. F. The mother centriole plays an instructive role in defining cell geometry. PLoS Biol.5, e149 (2007). PubMedPubMed Central Google Scholar
Svetina, S. & Zeks, B. Shape behavior of lipid vesicles as the basis of some cellular processes. Anat. Rec.268, 215–225 (2002). CASPubMed Google Scholar
Deuling, H. J. & Helfrich, W. Curvature elasticity of fluid membranes — catalog of vesicle shapes. Journal De Physique37, 1335–1345 (1976). CAS Google Scholar
Kas, J. & Sackmann, E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J.60, 825–844 (1991). CASPubMedPubMed Central Google Scholar
Seifert, U. Configurations of fluid membranes and vesicles. Advances in Physics46, 13–137 (1997). CAS Google Scholar
McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodeling. Nature438, 590–596 (2005). CASPubMed Google Scholar
Veatch, S. L. & Keller, S. L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett.89, 268101 (2002). PubMed Google Scholar
Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425, 821–824 (2003). CASPubMed Google Scholar
Dobereiner, H. G., Kas, J., Noppl, D., Sprenger, I. & Sackmann, E. Budding and fission of vesicles. Biophys. J.65, 1396–1403 (1993). CASPubMedPubMed Central Google Scholar
Julicher, F. & Lipowsky, R. Domain-induced budding of vesicles. Phys. Rev. Lett.70, 2964–2967 (1993). CASPubMed Google Scholar
Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J.24, 1537–1545 (2005). CASPubMedPubMed Central Google Scholar
Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nature Rev. Mol. Cell Biol.7, 9–19 (2006). CAS Google Scholar
Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol.15, 372–381 (2003). CASPubMed Google Scholar
Antonny, B. Membrane deformation by protein coats. Curr. Opin. Cell Biol.18, 386–394 (2006). CASPubMed Google Scholar
Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell132, 807–817 (2008). Describes how a class of membrane curvature-inducing proteins operates at a structural level. CASPubMedPubMed Central Google Scholar
Shnyrova, A. V. et al. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. J. Cell Biol.179, 627–633 (2007). CASPubMedPubMed Central Google Scholar
Shibata, Y., Voeltz, G. K. & Rapoport, T. A. Rough sheets and smooth tubules. Cell126, 435–439 (2006). CASPubMed Google Scholar
Dabora, S. L. & Sheetz, M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell54, 27–35 (1988). CASPubMed Google Scholar
Vale, R. D. & Hotani, H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol.107, 2233–2241 (1988). CASPubMed Google Scholar
Leduc, C. et al. Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl Acad. Sci. USA101, 17096–17101 (2004). CASPubMedPubMed Central Google Scholar
Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol.148, 883–898 (2000). CASPubMedPubMed Central Google Scholar
Waterman-Storer, C. M. & Salmon, E. D. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol.8, 798–806 (1998). CASPubMed Google Scholar
Vedrenne, C. & Hauri, H. P. Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic7, 639–646 (2006). CASPubMed Google Scholar
Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell124, 573–586 (2006). Shows how proteins can induce specific changes in membrane shape. CASPubMed Google Scholar
De Craene, J. O. et al. Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol. Biol. Cell17, 3009–3020 (2006). CASPubMedPubMed Central Google Scholar
Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science319, 1247–1250 (2008). CASPubMed Google Scholar
Bereiter-Hahn, J. Behavior of mitochondria in the living cell. Int. Rev. Cytol.122, 1–63 (1990). CASPubMed Google Scholar
Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet.39, 503–536 (2005). CASPubMed Google Scholar
Boldogh, I. R. & Pon, L. A. Mitochondria on the move. Trends Cell Biol.17, 502–510 (2007). CASPubMed Google Scholar
Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem.76, 751–780 (2007). CASPubMed Google Scholar
Merz, S., Hammermeister, M., Altmann, K., Durr, M. & Westermann, B. Molecular machinery of mitochondrial dynamics in yeast. Biol. Chem.388, 917–926 (2007). CASPubMed Google Scholar
Nunnari, J. et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell8, 1233–1242 (1997). CASPubMedPubMed Central Google Scholar
Arakaki, N. et al. Dynamics of mitochondria during the cell cycle. Biol. Pharm. Bull.29, 1962–1965 (2006). CASPubMed Google Scholar
Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem.282, 11521–11529 (2007). CASPubMed Google Scholar
Youle, R. J. & Karbowski, M. Mitochondrial fission in apoptosis. Nature Rev. Mol. Cell Biol.6, 657–663 (2005). CAS Google Scholar
Egner, A., Jakobs, S. & Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl Acad. Sci. USA99, 3370–3375 (2002). CASPubMedPubMed Central Google Scholar
Solomon, F. Specification of cell morphology by endogenous determinants. J. Cell Biol.90, 547–553 (1981). CASPubMed Google Scholar
Bouck, G. B. & Brown, D. L. Microtubule biogenesis and cell shape in Ochromonas: II. The role of nucleating sites in shape development. J. Cell Biol.56, 360–378 (1987). Google Scholar
Albrecht-Buehler, G. Daughter 3T3 cells. Are they mirror images of each other? J. Cell Biol.72, 595–603 (1977). Shows images of sister cells that seem to be mirror images of each other, suggesting the propagation of structural determinants to the two daughter cells in opposite directions by the mitotic spindle during division. CASPubMed Google Scholar
Solomon, F. Detailed neurite morphologies of sister neuroblastoma cells are related. Cell16, 165–169 (1979). CASPubMed Google Scholar
Locke, M. Is there somatic inheritance of intracellular patterns? J. Cell Biol.96, 563–567 (1990). Google Scholar
Tawk, M. et al. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature446, 797–800 (2007). CASPubMed Google Scholar
Beisson, J. & Sonneborn, T. M. Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc. Natl Acad. Sci. USA53, 275–282 (1965). A classic study showing that when part of the cortex of a ciliate is rearranged, the rearrangement can propagate for multiple cell divisions without any accompanying genetic change. CASPubMedPubMed Central Google Scholar
Shi, X. B. & Frankel, J. Morphology and development of mirror-image doublets of Stylonychia mytilus. J. Protozool.37, 1–13 (1990). CASPubMed Google Scholar