Coordinated protein sorting, targeting and distribution in polarized cells (original) (raw)
Palade, G. Intracellular aspects of the process of protein synthesis. Science189, 867 (1975). CASPubMed Google Scholar
Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech. Dev.120, 1351–1383 (2003). CASPubMed Google Scholar
Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell Biol.7, 131–142 (2006). CAS Google Scholar
Wodarz, A. & Nathke, I. Cell polarity in development and cancer. Nature Cell Biol.9, 1016–1024 (2007). CASPubMed Google Scholar
Rothman, J. E. Mechanisms of intracellular protein transport. Nature372, 55–63 (1994). CASPubMed Google Scholar
Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol.20, 87–123 (2004). CASPubMed Google Scholar
Pearse, B. M. & Robinson, M. S. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol.6, 151–171 (1990). CASPubMed Google Scholar
Edeling, M. A., Smith, C. & Owen, D. Life of a clathrin coat: insights from clathrin and AP structures. Nature Rev. Mol. Cell Biol.7, 32–44 (2006). CAS Google Scholar
Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA103, 11821–11827 (2006). CASPubMedPubMed Central Google Scholar
Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol.14, 167–174 (2004). CASPubMed Google Scholar
Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science269, 1872–1875 (1995). CASPubMed Google Scholar
Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell71, 741–753 (1992). Provides a detailed analysis of sorting of LDLR in polarized MDCK epithelial cells, and defines two Tyr-based basolateral sorting signals. CASPubMed Google Scholar
Jareb, M. & Banker, G. The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors. Neuron20, 855–867 (1998). Provides evidence that sorting signals that are important for protein delivery to the apical and basolateral membranes of polarized epithelial cells also function in sorting to the axonal and somatodendritic domains, respectively, of polarized hippocampal neurons. CASPubMed Google Scholar
Rodriguez-Boulan, E. & Musch, A. Protein sorting in the Golgi complex: shifting paradigms. Biochim. Biophys. Acta1744, 455–464 (2005). CASPubMed Google Scholar
Folsch, H. Regulation of membrane trafficking in polarized epithelial cells. Curr. Opin. Cell Biol.20, 208–213 (2008). CASPubMedPubMed Central Google Scholar
Hunziker, W. & Fumey, C. A di-leucine motif mediates endocytosis and basolateral sorting of macrophage IgG Fc receptors in MDCK cells. EMBO J.13, 2963–2969 (1994). CASPubMedPubMed Central Google Scholar
Odorizzi, G. & Trowbridge, I. S. Structural requirements for basolateral sorting of the human transferrin receptor in the biosynthetic and endocytic pathways of Madin–Darby canine kidney cells. J. Cell Biol.137, 1255–1264 (1997). CASPubMedPubMed Central Google Scholar
Mostov, K. E., de Bruyn Kops, A. & Deitcher, D. L. Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell47, 359–364 (1986). Early study of cytoplasmic domain sorting motifs in the poly-IgA-receptor, which is involved in basolateral targeting and transcytosis. CASPubMed Google Scholar
Folsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell99, 189–198 (1999). Identification of AP-1B as an epithelial specific adaptor protein that is required for basolateral protein sorting. CASPubMed Google Scholar
Gan, Y., McGraw, T. E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol.4, 605–609 (2002). Identification of the recycling endosome as a site for AP-1B control of basolateral sorting of LDLR. CASPubMed Google Scholar
Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol.4, 154–9 (2002). CASPubMed Google Scholar
Koivisto, U. M., Hubbard, A. L. & Mellman, I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell105, 575–585 (2001). CASPubMed Google Scholar
Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature452, 719–723 (2008). Analysis of the effects of siRNA knockdown of clathrin on apical and basolateral membrane protein sorting in polarized epithelial cells. CASPubMedPubMed Central Google Scholar
Bennett, V. & Healy, J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol. Med.14, 28–36 (2008). CASPubMed Google Scholar
Kizhatil, K. et al. Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J. Biol. Chem.282, 26552–26561 (2007). CASPubMed Google Scholar
Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci.117, 5955–5964 (2004). CASPubMed Google Scholar
Yeaman, C. et al. The _O_-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol.139, 929–940 (1997). CASPubMedPubMed Central Google Scholar
Spodsberg, N., Jacob, R., Alfalah, M., Zimmer, K. P. & Naim, H. Y. Molecular basis of aberrant apical protein transport in an intestinal enzyme disorder. J. Biol. Chem.276, 23506–23510 (2001). CASPubMed Google Scholar
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature387, 569–572 (1997). Overview of the organization and functions of lipid rafts. CASPubMed Google Scholar
Paladino, S., Sarnataro, D., Tivodar, S. & Zurzolo, C. Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins. Traffic8, 251–258 (2007). Analysis of the mechanisms that are involved in GPI-protein sorting in the secretory pathway in polarized MDCK epithelial cells, and evidence for oligomerization in the late Golgi. CASPubMed Google Scholar
Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol.120, 353–358 (1993). CASPubMed Google Scholar
Vieira, O. V., Verkade, P., Manninen, A. & Simons, K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J. Cell Biol.170, 521–526 (2005). CASPubMedPubMed Central Google Scholar
Delacour, D. et al. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol.169, 491–501 (2005). CASPubMedPubMed Central Google Scholar
Chuang, J. Z. & Sung, C. H. The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells. J. Cell Biol.142, 1245–1256 (1998). Explains a role for sorting motifs in the cytoplasmic domain of rhodopsin during apical trafficking in polarized cells. CASPubMedPubMed Central Google Scholar
Tai, A. W., Chuang, J. Z. & Sung, C. H. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J. Cell Biol.153, 1499–1509 (2001). CASPubMedPubMed Central Google Scholar
Wisco, D. et al. Uncovering multiple axonal targeting pathways in hippocampal neurons. J. Cell Biol.162, 1317–1328 (2003). CASPubMedPubMed Central Google Scholar
Casanova, J. E., Breitfeld, P. P., Ross, S. A. & Mostov, K. E. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science248, 742–745 (1990). Explains the role of cytoplasmic sorting motif phosphorylation in the poly-IgA-receptor during transcytosis in polarized MDCK epithelial cells. CASPubMed Google Scholar
Gravotta, D. et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc. Natl Acad. Sci. USA104, 1564–1569 (2007). CASPubMedPubMed Central Google Scholar
Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol.6, 233–247 (2005). Detailed review of the mechanisms involved in protein sorting in polarized cells. CAS Google Scholar
Kizhatil, K. et al. Ankyrin-G and β2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells. J. Biol. Chem.282, 2029–2037 (2007). Evidence of a role of the ankyrin–spectrin complex in protein sorting and trafficking in polarized epithelial cells. CASPubMed Google Scholar
Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA85, 8335–8339 (1988). CASPubMedPubMed Central Google Scholar
Bacallao, R. et al. The subcellular organization of Madin–Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol.109, 2817–2832 (1989). CASPubMed Google Scholar
Grindstaff, K. K., Bacallao, R. L. & Nelson, W. J. Apiconuclear organization of microtubules does not specify protein delivery from the _trans_-Golgi network to different membrane domains in polarized epithelial cells. Mol. Biol. Cell9, 685–699 (1998). CASPubMedPubMed Central Google Scholar
Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell13, 511–522 (2007). CASPubMedPubMed Central Google Scholar
Lafont, F., Burkhardt, J. K. & Simons, K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature372, 801–803 (1994). CASPubMed Google Scholar
Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci.6, 201–214 (2005). CAS Google Scholar
Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell93, 731–740 (1998). Describes the localization of the SEC6–SEC8 (exocyst) complex in polarized epithelial cells and evidence for a role in the delivery of transport vesicles to the basolateral membrane. CASPubMed Google Scholar
Hazuka, C. D. et al. The Sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci.19, 1324–1334 (1999). CASPubMedPubMed Central Google Scholar
Folsch, H., Pypaert, M., Schu, P. & Mellman, I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J. Cell Biol.152, 595–606 (2001). CASPubMedPubMed Central Google Scholar
Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol.167, 531–543 (2004). Provides evidence that protein delivery between the Golgi complex and plasma membrane might involve an intermediate step through the recycling endosome. CASPubMedPubMed Central Google Scholar
Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nature Rev. Mol. Cell Biol.6, 449–461 (2005). CAS Google Scholar
Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem.279, 3680–3684 (2004). CASPubMed Google Scholar
Pocard, T., Le Bivic, A., Galli, T. & Zurzolo, C. Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J. Cell Sci.120, 3309–3320 (2007). CASPubMed Google Scholar
Low, S. H. et al. Differential localization of syntaxin isoforms in polarized Madin–Darby canine kidney cells. Mol. Biol. Cell7, 2007–2018 (1996). CASPubMedPubMed Central Google Scholar
Fujita, H., Tuma, P. L., Finnegan, C. M., Locco, L. & Hubbard, A. L. Endogenous syntaxins 2, 3 and 4 exhibit distinct but overlapping patterns of expression at the hepatocyte plasma membrane. Biochem. J.329, 527–538 (1998). CASPubMedPubMed Central Google Scholar
Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol.173, 937–948 (2006). Functional analysis of apical vesicle trafficking and the role of the t-SNARE syntaxin-3 in specifying vesicle fusion at the (apical) plasma membrane. CASPubMedPubMed Central Google Scholar
ter Beest, M. B., Chapin, S. J., Avrahami, D. & Mostov, K. E. The role of syntaxins in the specificity of vesicle targeting in polarized epithelial cells. Mol. Biol. Cell16, 5784–5792 (2005). CASPubMed Google Scholar
Fields, I. C. et al. v-SNARE cellubrevin is required for basolateral sorting of AP-1B-dependent cargo in polarized epithelial cells. J. Cell Biol.177, 477–488 (2007). CASPubMedPubMed Central Google Scholar
Hammerton, R. W. et al. Mechanism for regulating cell surface distribution of Na+, K+-ATPase in polarized epithelial cells. Science254, 847–850 (1991). CASPubMed Google Scholar
Mays, R. W., Beck, K. A. & Nelson, W. J. Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr. Opin. Cell Biol.6, 16–24 (1994). CASPubMed Google Scholar
Nelson, W. J. & Veshnock, P. J. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin–Darby canine kidney epithelial cells. J. Cell Biol.103, 1751–1765 (1986). CASPubMed Google Scholar
Nelson, W. J. & Lazarides, E. The patterns of expression of two ankyrin isoforms demonstrate distinct steps in the assembly of the membrane skeleton in neuronal morphogenesis. Cell39, 309–320 (1984). CASPubMed Google Scholar
Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol.22, 207–235 (2006). A review of the molecular organization and function of tight junctions in polarized epithelial cells. CASPubMed Google Scholar
Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature397, 698–701 (1999). Evidence for a diffusion barrier at the axonal hillock that controls the diffusion of proteins between the axonal and somatodendritic membrane domains. CASPubMed Google Scholar
Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell52, 311–320 (1988). The genetic screen that identified the identity and function of the PAR complex in earlyC. elegansdevelopment. CASPubMed Google Scholar
Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell116, 457–466 (2004). Evidence that activated LKB1 (PAR-4) can lead to polarization of epithelial cells in the absence of cell–cell and cell–extracellular matrix adhesion. CASPubMed Google Scholar
Shelly, M., Cancedda, L., Heilshorn, S., Sumbre, G. & Poo, M. M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell129, 565–577 (2007). CASPubMed Google Scholar
Williams, T. & Brenman, J. E. LKB1 and AMPK in cell polarity and division. Trends Cell Biol.18, 193–198 (2008). CASPubMed Google Scholar
Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature447, 1017–1020 (2007). CASPubMed Google Scholar
Illenberger, S. et al. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J. Biol. Chem.271, 10834–10843 (1996). CASPubMed Google Scholar
Cohen, D., Brennwald, P. J., Rodriguez-Boulan, E. & Musch, A. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J. Cell Biol.164, 717–727 (2004). CASPubMedPubMed Central Google Scholar
Cohen, D., Rodriguez-Boulan, E. & Musch, A. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl Acad. Sci. USA101, 13792–13797 (2004). CASPubMedPubMed Central Google Scholar
Elbert, M., Rossi, G. & Brennwald, P. The yeast Par-1 homologs Kin1 and Kin2 show genetic and physical interactions with components of the exocytic machinery. Mol. Biol. Cell16, 532–549 (2005). CASPubMedPubMed Central Google Scholar
Suzuki, A. & Ohno, S. The PAR–aPKC system: lessons in polarity. J. Cell Sci.119, 979–987 (2006). CASPubMed Google Scholar
Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell13, 609–622 (2007). Recent review of the PAR complex, covering their protein interactions, regulation and functions. CASPubMedPubMed Central Google Scholar
Atwood, S. X., Chabu, C., Penkert, R. R., Doe, C. Q. & Prehoda, K. E. Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6 aPKC. J. Cell Sci.120, 3200–3206 (2007). CASPubMed Google Scholar
Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol.143, 95–106 (1998). CASPubMedPubMed Central Google Scholar
Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol.5, 53–58 (2003). CASPubMed Google Scholar
Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell112, 63–75 (2003). CASPubMed Google Scholar
Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol.5, 46–52 (2003). Along with reference 79, provides genetic evidence of the roles of the PAR, Crumbs and Scribble polarity complexes in defining apical and basolateral membrane identity in polarized epithelial cells duringD. melanogasterembryogenesis. CASPubMed Google Scholar
Nishimura, T. et al. PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biol.7, 270–277 (2005). CASPubMed Google Scholar
Roh, M. H. & Margolis, B. Composition and function of PDZ protein complexes during cell polarization. Am. J. Physiol. Renal Physiol.285, F377–F387 (2003). PubMed Google Scholar
Sotillos, S., Diaz-Meco, M. T., Caminero, E., Moscat, J. & Campuzano, S. DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J. Cell Biol.166, 549–557 (2004). CASPubMedPubMed Central Google Scholar
Lemmers, C. et al. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol. Biol. Cell15, 1324–1333 (2004). CASPubMedPubMed Central Google Scholar
Nagai-Tamai, Y., Mizuno, K., Hirose, T., Suzuki, A. & Ohno, S. Regulated protein–protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells7, 1161–1171 (2002). CASPubMed Google Scholar
Benton, R. & St. Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell115, 691–704 (2003). CASPubMed Google Scholar
Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol.14, 736–741 (2004). CASPubMed Google Scholar
Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature422, 326–330 (2003). CASPubMed Google Scholar
Fan, S. et al. Polarity proteins control ciliogenesis via kinesin motor interactions. Curr. Biol.14, 1451–1461 (2004). CASPubMed Google Scholar
Sfakianos, J. et al. Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells. J. Cell Biol.179, 1133–1140 (2007). CASPubMedPubMed Central Google Scholar
Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science313, 629–633 (2006). CASPubMed Google Scholar
Esch, T., Lemmon, V. & Banker, G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci.19, 6417–6426 (1999). CASPubMedPubMed Central Google Scholar
Streuli, C. H. et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol.129, 591–603 (1995). CASPubMed Google Scholar
O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol.3, 831–838 (2001). Evidence that the extracellular matrix component laminin and RAC1 control epithelial cell polarity in 3D space. CASPubMed Google Scholar
Schmidhauser, C. et al. A novel transcriptional enhancer is involved in the prolactin- and extracellular matrix-dependent regulation of β-casein gene expression. Mol. Biol. Cell3, 699–709 (1992). CASPubMedPubMed Central Google Scholar
Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev.20, 3199–3214 (2006). CASPubMed Google Scholar
Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell–cell and cell–substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci.95, 137–151 (1990). PubMed Google Scholar
Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA91, 8263–8267 (1994). CASPubMedPubMed Central Google Scholar
Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol.178, 323–335 (2007). Direct analysis of vesicle trafficking between the Golgi complex and cell–cell contacts and the role of microtubules, the exocyst and SNARE complexes. CASPubMedPubMed Central Google Scholar
Halbleib, J. M., Saaf, A. M., Brown, P. O. & Nelson, W. J. Transcriptional modulation of genes encoding structural characteristics of differentiating enterocytes during development of a polarized epithelium in vitro. Mol. Biol. Cell18, 4261–4278 (2007). CASPubMedPubMed Central Google Scholar
Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol.167, 135–147 (2004). Genetic dissection of the roles of cadherin-mediated cell–cell adhesion and the PAR complex in epithelial cell polarity in developingD. melanogaster . CASPubMedPubMed Central Google Scholar
Ebnet, K. et al. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J. Cell Sci.116, 3879–3891 (2003). CASPubMed Google Scholar
Takekuni, K. et al. Direct binding of cell polarity protein PAR-3 to cell–cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J. Biol. Chem.278, 5497–5500 (2003). CASPubMed Google Scholar
Wang, Q., Chen, X. W. & Margolis, B. PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol. Biol. Cell18, 874–885 (2007). PubMedPubMed Central Google Scholar
Blankenship, J. T., Fuller, M. T. & Zallen, J. A. The Drosophila homolog of the Exo84 exocyst subunit promotes apical epithelial identity. J. Cell Sci.120, 3099–3110 (2007). CASPubMed Google Scholar
Arimura, N. & Kaibuchi, K. Key regulators in neuronal polarity. Neuron48, 881–884 (2005). CASPubMed Google Scholar
Martin-Belmonte, F. et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr. Biol.18, 507–513 (2008). CASPubMedPubMed Central Google Scholar
Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol.2, 531–539 (2000). CASPubMed Google Scholar
Mertens, A. E., Rygiel, T. P., Olivo, C., van der Kammen, R. & Collard, J. G. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol.170, 1029–1037 (2005). CASPubMedPubMed Central Google Scholar
Gassama-Diagne, A. et al. Phosphatidylinositol-3,4, 5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biol.8, 963–970 (2006). CASPubMed Google Scholar
Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell128, 383–397 (2007). Analysis of PtdIns(3,4)P2and PtdIns(3,4,5)P3distributions in polarized epithelial cells in 3D cultures, and the effects of mislocalization of these phosphoinositides on apical and basolateral membrane-domain organization. CASPubMedPubMed Central Google Scholar
Rescher, U., Ruhe, D., Ludwig, C., Zobiack, N. & Gerke, V. Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. J. Cell Sci.117, 3473–3480 (2004). CASPubMed Google Scholar
Anderson, D. C., Gill, J. S., Cinalli, R. M. & Nance, J. Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science320, 1771–1774 (2008). CASPubMedPubMed Central Google Scholar
von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development132, 1675–1686 (2005). CASPubMed Google Scholar
Wu, H. et al. PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol. Cell28, 886–898 (2007). CASPubMed Google Scholar
Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol.16, 522–529 (2006). CASPubMed Google Scholar
Liu, J., Zuo, X., Yue, P. & Guo, W. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell18, 4483–4492 (2007). CASPubMedPubMed Central Google Scholar
Audebert, S. et al. Mammalian Scribble forms a tight complex with the βPIX exchange factor. Curr. Biol.14, 987–995 (2004). CASPubMed Google Scholar
Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell1, 183–192 (1998). CASPubMed Google Scholar
Zhao, Z. S., Manser, E., Loo, T. H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell Biol.20, 6354–6363 (2000). CASPubMedPubMed Central Google Scholar
Roche, J. P., Packard, M. C., Moeckel-Cole, S. & Budnik, V. Regulation of synaptic plasticity and synaptic vesicle dynamics by the PDZ protein Scribble. J. Neurosci.22, 6471–6479 (2002). CASPubMedPubMed Central Google Scholar
Naesens, M., Steels, P., Verberckmoes, R., Vanrenterghem, Y. & Kuypers, D. Bartter's and Gitelman's syndromes: from gene to clinic. Nephron Physiol.96, 65–78 (2004). Google Scholar
Staub, O. et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J.16, 6325–6336 (1997). CASPubMedPubMed Central Google Scholar
Bertrand, C. A. & Frizzell, R. A. The role of regulated CFTR trafficking in epithelial secretion. Am. J. Physiol. Cell Physiol.285, C1–18 (2003). CASPubMed Google Scholar
Keiser, M., Alfalah, M., Propsting, M. J., Castelletti, D. & Naim, H. Y. Altered folding, turnover, and polarized sorting act in concert to define a novel pathomechanism of congenital sucrase-isomaltase deficiency. J. Biol. Chem.281, 14393–14399 (2006). CASPubMed Google Scholar
Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell133, 403–414 (2008). CASPubMed Google Scholar
Gardiol, D., Zacchi, A., Petrera, F., Stanta, G. & Banks, L. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int. J. Cancer119, 1285–1290 (2006). CASPubMed Google Scholar
Sung, C. H. & Tai, A. W. Rhodopsin trafficking and its role in retinal dystrophies. Int. Rev. Cytol.195, 215–267 (2000). CASPubMed Google Scholar
Jenne, D. E. et al. Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nature Genet.18, 38–43 (1998). CASPubMed Google Scholar
Kleta, R. & Bockenhauer, D. Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol.104, p73–p80 (2006). CASPubMed Google Scholar
Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev.18, 1909–1925 (2004). CASPubMed Google Scholar
Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Rev. Cancer7, 415–428 (2007). CAS Google Scholar