Koster, M. I. & Roop, D. R. Mechanisms regulating epithelial stratification. Annu. Rev. Cell Dev. Biol.23, 93–113 (2007). CASPubMed Google Scholar
Fuchs, E. & Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell19, 1033–1042 (1980). CASPubMed Google Scholar
Candi, E., Schmidt, R. & Melino, G. The cornified envelope: a model of cell death in the skin. Nature Rev. Mol. Cell Biol.6, 328–340 (2005). CAS Google Scholar
Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell129, 523–536 (2007). CASPubMed Google Scholar
Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R. & Khavari, P. A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev.20, 3185–3197 (2006). CASPubMedPubMed Central Google Scholar
Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature398, 708–713 (1999). CASPubMed Google Scholar
Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature398, 714–718 (1999). CASPubMed Google Scholar
Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J. & Roop, D. R. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev.18, 126–131 (2004). CASPubMedPubMed Central Google Scholar
Blanpain, C., Lowry, W. E., Pasolli, H. A. & Fuchs, E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev.20, 3022–3035 (2006). CASPubMedPubMed Central Google Scholar
Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J.20, 3427–3436 (2001). CASPubMedPubMed Central Google Scholar
Watt, F. M., Estrach, S. & Ambler, C. A. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr. Opin. Cell Biol.20, 171–179 (2008). CASPubMedPubMed Central Google Scholar
Moriyama, M. et al. Multiple roles of Notch signaling in the regulation of epidermal development. Dev. Cell14, 594–604 (2008). CASPubMed Google Scholar
Wang, X., Pasolli, H. A., Williams, T. & Fuchs, E. AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J. Cell Biol.183, 37–48 (2008). CASPubMedPubMed Central Google Scholar
Yi, R. et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genet.38, 356–362 (2006). CASPubMed Google Scholar
Yi, R., Poy, M. N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature452, 225–229 (2008). CASPubMedPubMed Central Google Scholar
Andl, T. et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr. Biol.16, 1041–1049 (2006). CASPubMedPubMed Central Google Scholar
Lena, A. M. et al. miR-203 represses 'stemness' by repressing ΔNp63. Cell Death Differ.15, 1187–1195 (2008). CASPubMed Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell128, 693–705 (2007). CASPubMed Google Scholar
Sen, G. L., Webster, D. E., Barragan, D. I., Chang, H. Y. & Khavari, P. A. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev.22, 1865–1870 (2008). CASPubMedPubMed Central Google Scholar
Frye, M., Fisher, A. G. & Watt, F. M. Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS ONE2, e763 (2007). PubMedPubMed Central Google Scholar
Watt, F. M., Frye, M. & Benitah, S. A. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nature Rev. Cancer8, 234–242 (2008). CAS Google Scholar
Smart, I. H. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. Br. J. Dermatol.82, 276–282 (1970). CASPubMed Google Scholar
Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature437, 275–280 (2005). Describes how the temporal regulation of spindle pole orientation controls epidermal stratification during embryonic development. CASPubMedPubMed Central Google Scholar
Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature446, 185–189 (2007). Combines lineage tracing experiments and mathematical modelling and suggests that epidermal tail homeostasis does not require the existence of TA cells. CASPubMed Google Scholar
Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell132, 583–597 (2008). CASPubMed Google Scholar
Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Rev. Mol. Cell Biol.9, 355–366 (2008). Google Scholar
Ro, S. & Rannala, B. Evidence from the stop-EGFP mouse supports a niche-sharing model of epidermal proliferative units. Exp. Dermatol.14, 838–843 (2005). PubMed Google Scholar
Kolodka, T. M., Garlick, J. A. & Taichman, L. B. Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc. Natl Acad. Sci. USA95, 4356–4361 (1998). CASPubMedPubMed Central Google Scholar
Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J.20, 1215–1222 (2001). CASPubMedPubMed Central Google Scholar
Mackenzie, I. C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol.109, 377–383 (1997). CASPubMed Google Scholar
Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep.5, 914–920 (2004). CASPubMedPubMed Central Google Scholar
Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell76, 1063–1073 (1994). The first paper to demonstrate that HF bulge SCs present a greater clonogenic potential and can reconstitute the IFE on transplantation. CASPubMed Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). This work, together with reference 52, show that the progeny of a single cultured bulge SC can differentiate in all cell lineages of the skin epidermis. CASPubMed Google Scholar
Trempus, C. S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol.120, 501–511 (2003). CASPubMed Google Scholar
Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA95, 3902–3907 (1998). CASPubMedPubMed Central Google Scholar
Jones, P. H. & Watt, F. M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell73, 713–724 (1993). The first study to isolate and functionally characterize SCs and TA cells of the human skin epidermis. CASPubMed Google Scholar
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). The first study to suggest that HF SCs are slow-cycling cells that reside in the bulge region. CASPubMed Google Scholar
Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development130, 5241–5255 (2003). CASPubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). Introduced a transgenic mouse model to fluorescently tag, isolate and functionally characterize slow-cycling cells in mice. CASPubMed Google Scholar
Wilson, C. et al. Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation55, 127–136 (1994). CASPubMed Google Scholar
Waghmare, S. K. et al. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J.27, 1309–1320 (2008). CASPubMedPubMed Central Google Scholar
Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet.40, 1291–1299 (2008). CASPubMed Google Scholar
Sotiropoulou, P. A., Candi, A. & Blanpain, C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells26, 2964–2973 (2008). CASPubMed Google Scholar
Cairns, J. Mutation selection and the natural history of cancer. Nature255, 197–200 (1975). CASPubMed Google Scholar
Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell3, 33–43 (2008). Shows that the slow-cycling bulge SCs are specified during embryogenesis, in which they function to make the SG, complete HF morphogenesis and efficiently repair epidermal wounds. CASPubMedPubMed Central Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotech.22, 411–417 (2004). CAS Google Scholar
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med.11, 1351–1354 (2005). CASPubMed Google Scholar
Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell9, 855–861 (2005). CASPubMed Google Scholar
Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J.21, 1358–1366 (2007). References 48–51 show that during homeostasis, the IFE is maintained independently of HF SCs, but that during wound repair, HF cells contribute to the epidermis. CASPubMed Google Scholar
Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA102, 14677–14682 (2005). CASPubMedPubMed Central Google Scholar
Vidal, V. P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol.15, 1340–1351 (2005). CASPubMed Google Scholar
Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation72, 548–557 (2004). PubMed Google Scholar
Legue, E. & Nicolas, J. F. Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development132, 4143–4154 (2005). CASPubMed Google Scholar
Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell6, 331–343 (1975). CASPubMed Google Scholar
Gallico, G. G. 3rd, O'Connor, N. E., Compton, C. C., Kehinde, O. & Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med.311, 448–451 (1984). PubMed Google Scholar
Kobayashi, K., Rochat, A. & Barrandon, Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc. Natl Acad. Sci. USA90, 7391–7395 (1993). CASPubMedPubMed Central Google Scholar
Barrandon, Y. & Green, H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc. Natl Acad. Sci. USA82, 5390–5394 (1985). CASPubMedPubMed Central Google Scholar
Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell126, 597–609 (2006). CASPubMedPubMed Central Google Scholar
Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J. & Roop, D. R. Deregulated expression of c-Myc depletes epidermal stem cells. Nature Genet.28, 165–168 (2001). CASPubMed Google Scholar
Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol.11, 558–568 (2001). CASPubMed Google Scholar
Nijhof, J. G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development133, 3027–3037 (2006). CASPubMed Google Scholar
Jensen, U. B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci.121, 609–617 (2008). CASPubMed Google Scholar
DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126, 4557–4568 (1999). CASPubMed Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). CASPubMed Google Scholar
Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell2, 643–653 (2002). CASPubMed Google Scholar
Lo Celso, C., Prowse, D. M. & Watt, F. M. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development131, 1787–1799 (2004). CASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). The first study to point to the key role of Wnt signalling in HF specification and in inducing HF derived tumours. CASPubMed Google Scholar
Silva-Vargas, V. et al. β-catenin and hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell9, 121–131 (2005). CASPubMed Google Scholar
Zhang, Y. et al. Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development135, 2161–2172 (2008). CASPubMed Google Scholar
Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science314, 1447–1450 (2006). CASPubMed Google Scholar
Lowry, W. E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev.19, 1596–1611 (2005). CASPubMedPubMed Central Google Scholar
Van Mater, D., Kolligs, F. T., Dlugosz, A. A. & Fearon, E. R. Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev.17, 1219–1224 (2003). CASPubMedPubMed Central Google Scholar
Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001). CASPubMedPubMed Central Google Scholar
Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature447, 316–320 (2007). CASPubMed Google Scholar
Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature434, 843–850 (2005). CASPubMed Google Scholar
Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell127, 171–183 (2006). CASPubMed Google Scholar
Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature451, 340–344 (2008). CASPubMedPubMed Central Google Scholar
Botchkarev, V. A. et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biol.1, 158–164 (1999). CASPubMed Google Scholar
Jamora, C., DasGupta, R., Kocieniewski, P. & Fuchs, E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature422, 317–322 (2003). CASPubMedPubMed Central Google Scholar
Muller-Rover, S. et al. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling. Exp. Dermatol.8, 237–246 (1999). CASPubMed Google Scholar
Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA104, 10063–10068 (2007). CASPubMedPubMed Central Google Scholar
Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol.163, 609–623 (2003). CASPubMedPubMed Central Google Scholar
Andl, T. et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development131, 2257–2268 (2004). CASPubMed Google Scholar
Paus, R. & Foitzik, K. In search of the “hair cycle clock”: a guided tour. Differentiation72, 489–511 (2004). CASPubMed Google Scholar
Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell132, 299–310 (2008). CASPubMedPubMed Central Google Scholar
Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal–epithelial interactions in the hair follicle. PLoS Biol.3, e331 (2005). PubMedPubMed Central Google Scholar
Rendl, M., Polak, L. & Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev.22, 543–557 (2008). CASPubMedPubMed Central Google Scholar
Botchkarev, V. A. et al. Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J.15, 2205–2214 (2001). CASPubMed Google Scholar
Zhang, J. et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells24, 2826–2839 (2006). CASPubMed Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). CASPubMed Google Scholar
Oro, A. E. & Higgins, K. Hair cycle regulation of Hedgehog signal reception. Dev. Biol.255, 238–248 (2003). CASPubMed Google Scholar
Pan, Y. et al. γ-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev. Cell7, 731–743 (2004). CASPubMed Google Scholar
Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev.9, 700–713 (1995). CASPubMed Google Scholar
Kaufman, C. K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev.17, 2108–2122 (2003). CASPubMedPubMed Central Google Scholar
Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature452, 650–653 (2008). CASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet.21, 410–413 (1999). CASPubMed Google Scholar
Hoseong Yang, S. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β-catenin signaling. Nature Genet.40, 1130–1135 (2008). Google Scholar
Rhee, H., Polak, L. & Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science312, 1946–1949 (2006). CASPubMedPubMed Central Google Scholar
Osorio, K. M. et al. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development135, 1059–1068 (2008). CASPubMed Google Scholar
Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature441, 1068–1074 (2006). CASPubMed Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). The first study to suggest that the bulge region contains multipotent epidermal stem cells. CASPubMed Google Scholar
Hardy, M. H. The secret life of the hair follicle. Trends Genet.8, 55–61 (1992). CASPubMed Google Scholar