The emerging role of nuclear architecture in DNA repair and genome maintenance (original) (raw)
Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet.40, 363–383 (2006). CASPubMed Google Scholar
Lobrich, M. & Jeggo, P. A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature Rev. Cancer7, 861–869 (2007). Google Scholar
Kanaar, R., Wyman, C. & Rothstein, R. Quality control of DNA break metabolism: in the 'end', it's a good thing. EMBO J.27, 581–588 (2008). CASPubMedPubMed Central Google Scholar
Lukas, J., Lukas, C. & Bartek, J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair3, 997–1007 (2004). CASPubMed Google Scholar
Misteli, T. Beyond the sequence: cellular organization of genome function. Cell128, 787–800 (2007). CASPubMed Google Scholar
Berkovich, E., Monnat, R. J. Jr & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biol.9, 683–690 (2007). CASPubMed Google Scholar
Paull, T. T. & Lee, J. H. The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle4, 737–740 (2005). CASPubMed Google Scholar
Petrini, J. H. & Stracker, T. H. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol.13, 458–462 (2003). CASPubMed Google Scholar
Costanzo, V., Paull, T., Gottesman, M. & Gautier, J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol.2, E110 (2004). PubMedPubMed Central Google Scholar
Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science308, 551–554 (2005). CASPubMed Google Scholar
Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell123, 1213–1226 (2005). CASPubMed Google Scholar
Chapman, J. R. & Jackson, S. P. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep.9, 795–801 (2008). CASPubMedPubMed Central Google Scholar
Melander, F. et al. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J. Cell Biol.181, 213–226 (2008). CASPubMedPubMed Central Google Scholar
Spycher, C. et al. Constitutive phosphorylation of MDC1 physically links the MRE11–RAD50–NBS1 complex to damaged chromatin. J. Cell Biol.181, 227–240 (2008). CASPubMedPubMed Central Google Scholar
Wu, L., Luo, K., Lou, Z. & Chen, J. MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc. Natl Acad. Sci. USA105, 11200–11205 (2008). CASPubMedPubMed Central Google Scholar
Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell131, 901–914 (2007). CASPubMedPubMed Central Google Scholar
Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science318, 1637–1640 (2007). CASPubMedPubMed Central Google Scholar
Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell131, 887–900 (2007). CASPubMed Google Scholar
Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science316, 1202–1205 (2007). CASPubMed Google Scholar
Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science316, 1198–1202 (2007). CASPubMedPubMed Central Google Scholar
Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science316, 1194–1198 (2007). CASPubMedPubMed Central Google Scholar
Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell118, 699–713 (2004). A comprehensive analysis of the temporal sequence of recruitment events inS. cerevisiae. CASPubMed Google Scholar
Melo, J. & Toczyski, D. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol.14, 237–245 (2002). CASPubMed Google Scholar
Bonilla, C. Y., Melo, J. A. & Toczyski, D. P. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell30, 267–276 (2008). Introduces the concept of activation of the DDR in the absence of DNA breaks inS. cerevisiae. CASPubMedPubMed Central Google Scholar
Soutoglou, E. DNA lesions and DNA damage response: Even long lasting relationships need a “break”. Cell Cycle7, 3653–3658 (2008). CASPubMed Google Scholar
Soutoglou, E. & Misteli, T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science320, 1507–1510 (2008). Introduces the concept of activation of the DDR in the absence of DNA breaks in mammalian cells. CASPubMedPubMed Central Google Scholar
Lukas, C., Bartek, J. & Lukas, J. Imaging of protein movement induced by chromosomal breakage: tiny 'local' lesions pose great 'global' challenges. Chromosoma114, 146–154 (2005). CASPubMed Google Scholar
Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol.173, 195–206 (2006). CASPubMedPubMed Central Google Scholar
Essers, J. et al. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J.21, 2030–2037 (2002). CASPubMedPubMed Central Google Scholar
Lukas, C. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J.23, 2674–2683 (2004). CASPubMedPubMed Central Google Scholar
Gorski, S. A., Snyder, S. K., John, S., Grummt, I. & Misteli, T. Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol. Cell30, 486–497 (2008). CASPubMedPubMed Central Google Scholar
Politi, A. et al. Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies. Mol. Cell19, 679–690 (2005). Reports the development of a mathematical model for the assembly process of the DNA-repair machineryin vivo. CASPubMed Google Scholar
Toledo, L. I., Murga, M., Gutierrez-Martinez, P., Soria, R. & Fernandez-Capetillo, O. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev.22, 297–302 (2008). Shows that a persistent DDR in the absence of breaks leads to cellular senescence. CASPubMedPubMed Central Google Scholar
Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature421, 499–506 (2003). CASPubMed Google Scholar
Bencokova, Z. et al. ATM activation and signalling under hypoxic conditions. Mol. Cell. Biol.29, 526–537 (2008). PubMedPubMed Central Google Scholar
Downs, J. A., Nussenzweig, M. C. & Nussenzweig, A. Chromatin dynamics and the preservation of genetic information. Nature447, 951–958 (2007). CASPubMed Google Scholar
Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol.146, 905–916 (1999). CASPubMedPubMed Central Google Scholar
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem.273, 5858–5868 (1998). CASPubMed Google Scholar
Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell114, 359–370 (2003). CASPubMed Google Scholar
Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell114, 371–383 (2003). Demonstrates the functional importance of H2AX phosphorylation in genome maintenance. CASPubMedPubMed Central Google Scholar
Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med.197, 1767–1778 (2003). CASPubMedPubMed Central Google Scholar
Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell16, 1017–1025 (2004). CASPubMed Google Scholar
Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature408, 433–439 (2000). CASPubMed Google Scholar
Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol.5, 675–679 (2003). CASPubMed Google Scholar
Downs, J. A., Lowndes, N. F. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature408, 1001–1004 (2000). CASPubMed Google Scholar
Fernandez-Capetillo, O. et al. DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol.4, 993–997 (2002). CASPubMed Google Scholar
Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell16, 979–990 (2004). CASPubMed Google Scholar
Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science306, 2084–2087 (2004). CASPubMed Google Scholar
Morrison, A. J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell119, 767–775 (2004). CASPubMed Google Scholar
Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell16, 991–1002 (2004). PubMed Google Scholar
van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell119, 777–788 (2004). CASPubMed Google Scholar
Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol.172, 823–834 (2006). CASPubMedPubMed Central Google Scholar
Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol.8, 870–876 (2006). CASPubMed Google Scholar
Bao, Y. & Shen, X. Chromatin remodeling in DNA double-strand break repair. Curr. Opin. Genet. Dev.17, 126–131 (2007). CASPubMed Google Scholar
Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev.19, 1656–1661 (2005). CASPubMedPubMed Central Google Scholar
Tsukuda, T., Fleming, A. B., Nickoloff, J. A. & Osley, M. A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature438, 379–383 (2005). CASPubMedPubMed Central Google Scholar
Kobor, M. S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol.2, E131 (2004). PubMedPubMed Central Google Scholar
Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science303, 343–348 (2004). CASPubMed Google Scholar
Papamichos-Chronakis, M., Krebs, J. E. & Peterson, C. L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev.20, 2437–2449 (2006). CASPubMedPubMed Central Google Scholar
van Attikum, H., Fritsch, O. & Gasser, S. M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J.26, 4113–4125 (2007). CASPubMedPubMed Central Google Scholar
Park, J. H. et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J.25, 3986–3997 (2006). CASPubMedPubMed Central Google Scholar
Haldar, D. & Kamakaka, R. T. Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation. Eukaryot. Cell7, 800–813 (2008). CASPubMedPubMed Central Google Scholar
Jazayeri, A., McAinsh, A. D. & Jackson, S. P. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc. Natl Acad. Sci. USA101, 1644–1649 (2004). CASPubMedPubMed Central Google Scholar
Tamburini, B. A. & Tyler, J. K. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell. Biol.25, 4903–4913 (2005). CASPubMedPubMed Central Google Scholar
Keogh, M. C. et al. A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature439, 497–501 (2006). CASPubMed Google Scholar
Chowdhury, D. et al. γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell20, 801–809 (2005). CASPubMed Google Scholar
Chowdhury, D. et al. A PP4-phosphatase complex dephosphorylates γ-H2AX generated during DNA replication. Mol. Cell31, 33–46 (2008). CASPubMedPubMed Central Google Scholar
Krogan, N. J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc. Natl Acad. Sci. USA101, 13513–13518 (2004). CASPubMedPubMed Central Google Scholar
Ikura, T. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell. Biol.27, 7028–7040 (2007). CASPubMedPubMed Central Google Scholar
Jha, S., Shibata, E. & Dutta, A. Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol. Cell. Biol.28, 2690–2700 (2008). CASPubMedPubMed Central Google Scholar
Heo, K. et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol. Cell30, 86–97 (2008). CASPubMed Google Scholar
Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell127, 481–493 (2006). CASPubMed Google Scholar
Chen, C. C. et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell134, 231–243 (2008). CASPubMedPubMed Central Google Scholar
Mousson, F., Ochsenbein, F. & Mann, C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma116, 79–93 (2007). CASPubMed Google Scholar
Tyler, J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature402, 555–560 (1999). CASPubMed Google Scholar
Mello, J. A. et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep.3, 329–334 (2002). CASPubMedPubMed Central Google Scholar
O'Hagan, H. M., Mohammad, H. P. & Baylin, S. B. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet.4, e1000155 (2008). PubMedPubMed Central Google Scholar
Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell135, 907–918 (2008). CASPubMedPubMed Central Google Scholar
Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell31, 167–177 (2008). Provides evidence for a role of higher-order chromatin structure in DDR activation. CASPubMed Google Scholar
Ayoub, N., Jeyasekharan, A. D., Bernal, J. A. & Venkitaraman, A. R. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature453, 682–686 (2008). CASPubMed Google Scholar
Kim, Y. C. et al. The activation of ATM depends on chromatin interactions occurring prior to DNA damage induction. Nature Cell Biol.11, 92–96 (2008). PubMed Google Scholar
Murga, M. et al. Global chromatin compaction limits the strength of the DNA damage response. J. Cell Biol.178, 1101–1108 (2007). Provides evidence for an inhibitory effect of chromatin compaction on DNA-damage signalling. CASPubMedPubMed Central Google Scholar
Kim, J. A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J. E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol.178, 209–218 (2007). CASPubMedPubMed Central Google Scholar
Lisby, M., Antunez de Mayolo, A., Mortensen, U. H. & Rothstein, R. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle2, 479–483 (2003). CASPubMed Google Scholar
Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol.5, 572–577 (2003). CASPubMed Google Scholar
Lisby, M. & Rothstein, R. DNA damage checkpoint and repair centers. Curr. Opin. Cell Biol.16, 328–334 (2004). CASPubMed Google Scholar
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science322, 597–602 (2008). CASPubMedPubMed Central Google Scholar
Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol.9, 675–682 (2007). Reports the development and use of an experimental system to visualize DSBs in living mammalian cells and demonstrates that mammalian DSBs are immobile in the cell nucleus. CASPubMed Google Scholar
Aten, J. A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science303, 92–95 (2004). CASPubMed Google Scholar
Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science280, 590–592 (1998). CASPubMed Google Scholar
Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature456, 524–528 (2008). Shows that 53BP1 promotes chromatin mobility and end joining of deprotected telomeres. CASPubMedPubMed Central Google Scholar
Difilippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature456, 529–533 (2008). CASPubMedPubMed Central Google Scholar
Soutoglou, E. & Misteli, T. Mobility and immobility of chromatin in transcription and genome stability. Curr. Opin. Genet. Dev.17, 435–442 (2007). CASPubMedPubMed Central Google Scholar
Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet.8, 104–115 (2007). CASPubMed Google Scholar
Meaburn, K. J. & Misteli, T. Cell biology: chromosome territories. Nature445, 379–781 (2007). CASPubMed Google Scholar
Meaburn, K. J., Misteli, T. & Soutoglou, E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer Biol.17, 80–90 (2007). CASPubMed Google Scholar
Liyanage, M. et al. Abnormal rearrangement within the α/δ T-cell receptor locus in lymphomas from Atm-deficient mice. Blood96, 1940–1946 (2000). CASPubMed Google Scholar
Parada, L. A., McQueen, P. G., Munson, P. J. & Misteli, T. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol.12, 1692–1697 (2002). CASPubMed Google Scholar
Parada, L. A., McQueen, P. G. & Misteli, T. Tissue-specific spatial organization of genomes. Genome Biol.5, R44 (2004). PubMedPubMed Central Google Scholar
Neves, H., Ramos, C., da Silva, M. G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood93, 1197–1207 (1999). CASPubMed Google Scholar
Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet.34, 287–291 (2003). Demonstrates a correlation between the spatial proximity of genome regions and their likelihood of translocating, pointing to a significant role of non-random genome organization in determining translocation outcome. CASPubMed Google Scholar
Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol.4, e138 (2006). Demonstrates physical intermingling of the chromatin fibres of neighbouring chromosomes. PubMedPubMed Central Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet.36, 331–334 (2004). CASPubMed Google Scholar
Bird, A. W. et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature419, 411–415 (2002). CASPubMed Google Scholar
Megee, P. C., Morgan, B. A. & Smith, M. M. Histone H4 and the maintenance of genome integrity. Genes Dev.9, 1716–1727 (1995). CASPubMed Google Scholar
Qin, S. & Parthun, M. R. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol. Cell. Biol.22, 8353–8365 (2002). CASPubMedPubMed Central Google Scholar
Qin, S. & Parthun, M. R. Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol. Cell. Biol.26, 3649–3658 (2006). CASPubMedPubMed Central Google Scholar
Murr, R. et al. Histone acetylation by Trrap–Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature Cell Biol.8, 91–99 (2006). CASPubMed Google Scholar
Murr, R., Vaissiere, T., Sawan, C., Shukla, V. & Herceg, Z. Orchestration of chromatin-based processes: mind the TRRAP. Oncogene26, 5358–5372 (2007). CASPubMed Google Scholar
Driscoll, R., Hudson, A. & Jackson, S. P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science315, 649–652 (2007). CASPubMedPubMed Central Google Scholar
Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature436, 294–298 (2005). CASPubMed Google Scholar
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432, 406–411 (2004). CASPubMed Google Scholar
Wysocki, R. et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol.25, 8430–8443 (2005). CASPubMedPubMed Central Google Scholar
Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell127, 1361–1373 (2006). CASPubMedPubMed Central Google Scholar
Houston, S. I. et al. Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J. Biol. Chem.283, 19478–19488 (2008). CASPubMedPubMed Central Google Scholar
Jorgensen, S. et al. The histone methyltransferase SET8 is required for S-phase progression. J. Cell Biol.179, 1337–1345 (2007). PubMedPubMed Central Google Scholar
Du, L. L., Nakamura, T. M. & Russell, P. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev.20, 1583–1596 (2006). CASPubMedPubMed Central Google Scholar
Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell119, 603–614 (2004). CASPubMed Google Scholar
Fernandez-Capetillo, O., Allis, C. D. & Nussenzweig, A. Phosphorylation of histone H2B at DNA double-strand breaks. J. Exp. Med.199, 1671–1677 (2004). CASPubMedPubMed Central Google Scholar
Ahn, S. H., Henderson, K. A., Keeney, S. & Allis, C. D. H2B (Ser10) phosphorylation is induced during apoptosis and meiosis in S. cerevisiae. Cell Cycle4, 780–783 (2005). CASPubMed Google Scholar