Repeat instability as the basis for human diseases and as a potential target for therapy (original) (raw)
Pearson, C. E., Nichol Edamura, K. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nature Rev. Genet.6, 729–742 (2005). ArticleCAS Google Scholar
Swami, M. et al. Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet.18, 3039–3047 (2009). ArticleCAS Google Scholar
Cleary, J. D. & Pearson, C. E. The contribution of _cis_-elements to disease-associated repeat instability: Clinical and experimental evidence. Cytogenet. Genome Res.100, 25–55 (2003). ArticleCAS Google Scholar
Gonitel, R. et al. DNA instability in postmitotic neurons. Proc. Natl Acad. Sci. USA105, 3467–3472 (2008). ArticleCAS Google Scholar
Entezam, A. et al. Regional FMRP deficits and large repeat expansions into the full mutation range in a new Fragile X premutation mouse model. Gene395, 125–134 (2007). ArticleCAS Google Scholar
Gomes-Pereira, M. et al. CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet.3, e52 (2007). Article Google Scholar
Dion, V., Lin, Y., Hubert, L., Jr., Waterland, R. A. & Wilson, J. H. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum. Mol. Genet.17, 1306–1317 (2008). ArticleCAS Google Scholar
Entezam, A. & Usdin, K. ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice. Nucleic Acids Res.37, 6371–6377 (2009). ArticleCAS Google Scholar
De Temmerman, N. et al. CTG repeat instability in a human embryonic stem cell line carrying the myotonic dystrophy type 1 mutation. Mol. Hum. Reprod.14, 405–412 (2008). ArticleCAS Google Scholar
Eiges, R. et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell1, 568–577 (2007). ArticleCAS Google Scholar
Niclis, J. C. et al. Human embryonic stem cell models of Huntington disease. Reprod. Biomed. Online19, 106–113 (2009). ArticleCAS Google Scholar
Pearson, C. E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med.9, 490–495 (2003). ArticleCAS Google Scholar
Voineagu, I., Freudenreich, C. H. & Mirkin, S. M. Checkpoint responses to unusual structures formed by DNA repeats. Mol. Carcinog.48, 309–318 (2009). ArticleCAS Google Scholar
Moe, S. E., Sorbo, J. G. & Holen, T. Huntingtin triplet-repeat locus is stable under long-term Fen1 knockdown in human cells. J. Neurosci. Methods171, 233–238 (2008). ArticleCAS Google Scholar
Lopez Castel, A., Tomkinson, A. E. & Pearson, C. E. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. J. Biol. Chem.284, 26631–26645 (2009). ArticleCAS Google Scholar
Razidlo, D. F. & Lahue, R. S. Mrc1, Tof1 and Csm3 inhibit CAG•CTG repeat instability by at least two mechanisms. DNA Repair (Amst)7, 633–640 (2008). ArticleCAS Google Scholar
Shishkin, A. A. et al. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell35, 82–92 (2009). ArticleCAS Google Scholar
Dhar, A. & Lahue, R. S. Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae. Nucleic Acids Res.36, 3366–3373 (2008). ArticleCAS Google Scholar
Foiry, L. et al. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum. Genet.119, 520–526 (2006). ArticleCAS Google Scholar
Owen, B. A. et al. (CAG)n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nature Struct. Mol. Biol.12, 663–670 (2005). ArticleCAS Google Scholar
Tome, S. et al. MSH2 ATPase domain mutation affects CTG•CAG repeat instability in transgenic mice. PLoS Genet.5, e1000482 (2009). Article Google Scholar
Slean, M. M., Panigrahi, G. B., Ranum, L. P. & Pearson, C. E. Mutagenic roles of DNA “repair” proteins in antibody diversity and disease-associated trinucleotide repeat instability. DNA Repair (Amst)7, 1135–1154 (2008). ArticleCAS Google Scholar
Hou, C., Chan, N. L., Gu, L. & Li, G. M. Incision-dependent and error-free repair of (CAG)n/(CTG)n hairpins in human cell extracts. Nature Struct. Mol. Biol.16, 869–875 (2009). ArticleCAS Google Scholar
Panigrahi, G. B., Lau, R., Montgomery, S. E., Leonard, M. R. & Pearson, C. E. Slipped (CTG)•(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nature Struct. Mol. Biol.12, 654–662 (2005). ArticleCAS Google Scholar
Tian, L. et al. Mismatch recognition protein MutSβ does not hijack (CAG)n hairpin repair in vitro. J. Biol. Chem.284, 20452–20456 (2009). ArticleCAS Google Scholar
Liu, Y. et al. Coordination between polymerase β and FEN1 can modulate CAG repeat expansion. J. Biol. Chem.284, 28352–28366 (2009). ArticleCAS Google Scholar
Goula, A. V. et al. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet.5, e1000749 (2009). Article Google Scholar
Jarem, D. A., Wilson, N. R. & Delaney, S. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry48, 6655–6663 (2009). ArticleCAS Google Scholar
Jung, J. & Bonini, N. CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science315, 1857–1859 (2007). ArticleCAS Google Scholar
Lin, Y., Dion, V. & Wilson, J. H. Transcription promotes contraction of CAG repeat tracts in human cells. Nature Struct. Mol. Biol.13, 179–180 (2006). ArticleCAS Google Scholar
Lin, Y., Dent, S. Y., Wilson, J. H., Wells, R. D. & Napierala, M. R loops stimulate genetic instability of CTG•CAG repeats. Proc. Natl Acad. Sci. USA107, 692–697 (2010). ArticleCAS Google Scholar
Merienne, K. & Trottier, Y. SCA8 CAG/CTG expansions, a tale of two TOXICities: a unique or common case? PLoS Genet.5, e1000593 (2009). Article Google Scholar
Ladd, P. D. et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum. Mol. Genet.16, 3174–3187 (2007). ArticleCAS Google Scholar
Kerrest, A. et al. SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nature Struct. Mol. Biol.16, 159–167 (2009). ArticleCAS Google Scholar
Libby, R. T. et al. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet.4, e1000257 (2008). Article Google Scholar
Al-Mahdawi, S. et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum. Mol. Genet.17, 735–746 (2008). ArticleCAS Google Scholar
Castaldo, I. et al. DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich's ataxia patients. J. Med. Genet.45, 808–812 (2008). ArticleCAS Google Scholar
Edwards, S. F., Sirito, M., Krahe, R. & Sinden, R. R. A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG)•(CAGG) repeat. Proc. Natl Acad. Sci. USA106, 3270–3275 (2009). ArticleCAS Google Scholar
Kumari, D. & Usdin, K. Chromatin remodeling in the noncoding repeat expansion diseases. J. Biol. Chem.284, 7413–7417 (2009). ArticleCAS Google Scholar
Musova, Z. et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am. J. Med. Genet. A149A, 1365–1374 (2009). ArticleCAS Google Scholar
Braida, C. et al. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum. Mol. Genet. 15 Jan 2010 (doi:10.1093/hmg/ddq015).
Sureshkumar, S. et al. A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science323, 1060–1063 (2009). ArticleCAS Google Scholar
Lohi, H. et al. Expanded repeat in canine epilepsy. Science307, 81 (2005). ArticleCAS Google Scholar
Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M. & Verstrepen, K. J. Unstable tandem repeats in promoters confer transcriptional evolvability. Science324, 1213–1216 (2009). ArticleCAS Google Scholar
Yang, Z., Lau, R., Marcadier, J. L., Chitayat, D. & Pearson, C. E. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet.73, 1092–1105 (2003). ArticleCAS Google Scholar
Hashem, V. I. et al. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res.32, 6334–6346 (2004). ArticleCAS Google Scholar
Gomes-Pereira, M. & Monckton, D. G. Chemically induced increases and decreases in the rate of expansion of a CAG•CTG triplet repeat. Nucleic Acids Res.32, 2865–2872 (2004). ArticleCAS Google Scholar
Mittelman, D. et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc. Natl Acad. Sci. USA106, 9607–9612 (2009). ArticleCAS Google Scholar
Mirkin, S. M. Expandable DNA repeats and human disease. Nature447, 932–940 (2007). ArticleCAS Google Scholar
Grabczyk, E., Mancuso, M. & Sammarco, M. C. A persistent RNA•DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res.35, 5351–5359 (2007). ArticleCAS Google Scholar