Slipped (CTG)•(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair (original) (raw)

References

  1. Cleary, J.D. & Pearson, C.E. The contribution of _cis_-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet. Genome Res. 100, 25–55 (2003).
    Article CAS Google Scholar
  2. Pearson, C.E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 9, 490–495 (2003).
    Article CAS Google Scholar
  3. Yoon, S.R., Dubeau, L., de Young, M., Wexler, N.S. & Arnheim, N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc. Natl. Acad. Sci. USA 100, 8834–8838 (2003).
    Article CAS Google Scholar
  4. Cleary, J.D. & Pearson, C.E. Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet. 21, 272–280 (2005).
    Article CAS Google Scholar
  5. Sinden, R.R. Neurodegenerative diseases. Origins of instability. Nature 411, 757–758 (2001).
    Article CAS Google Scholar
  6. Yang, Z., Lau, R., Marcadier, J.L., Chitayat, D. & Pearson, C.E. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet. 73, 1092–1105 (2003).
    Article CAS Google Scholar
  7. Biancalana, V. et al. Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum. Mol. Genet. 1, 255–258 (1992).
    Article CAS Google Scholar
  8. Telenius, H. et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat. Genet. 6, 409–414 (1994).
    Article CAS Google Scholar
  9. Moseley, M.L. et al. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum. Mol. Genet. 9, 2125–2130 (2000).
    Article CAS Google Scholar
  10. Thornton, C.A., Johnson, K. & Moxley, R.T., III. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 35, 104–107 (1994).
    Article CAS Google Scholar
  11. Martorell, L., Johnson, K., Boucher, C.A. & Baiget, M. Somatic instability of the myotonic dystrophy (CTG)n repeat during human fetal development. Hum. Mol. Genet. 6, 877–880 (1997).
    Article CAS Google Scholar
  12. Ishii, S. et al. Small increase in triplet repeat length of cerebellum from patients with myotonic dystrophy. Hum. Genet. 98, 138–140 (1996).
    Article CAS Google Scholar
  13. Chong, S.S. et al. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 10, 344–350 (1995).
    Article CAS Google Scholar
  14. Wheeler, V.C. et al. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 12, 273–281 (2003).
    Article CAS Google Scholar
  15. Kennedy, L. et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 12, 3359–3367 (2003).
    Article CAS Google Scholar
  16. Manley, K., Shirley, T.L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23, 471–473 (1999).
    Article CAS Google Scholar
  17. Savouret, C. et al. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273 (2003).
    Article CAS Google Scholar
  18. van Den Broek, W.J. et al. Somatic expansion behaviour of the (CTG)(n) repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198 (2002).
    Article CAS Google Scholar
  19. Gomes-Pereira, M., Fortune, M.T., Ingram, L., McAbney, J.P. & Monckton, D.G. Pms2 is a genetic enhancer of trinucleotide CAG•CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13, 1815–1825 (2004).
    Article CAS Google Scholar
  20. Watase, K., Venken, K.J., Sun, Y., Orr, H.T. & Zoghbi, H.Y. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum. Mol. Genet. 12, 2789–2795 (2003).
    Article CAS Google Scholar
  21. Kovtun, I.V. & McMurray, C.T. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 27, 407–411 (2001).
    Article CAS Google Scholar
  22. Holmes, J.J., Clark, S. & Modrich, P. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl. Acad. Sci. USA 87, 5837–5841 (1990).
    Article CAS Google Scholar
  23. Thomas, D.C., Roberts, J.D. & Kunkel, T.A. Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266, 3744–3751 (1991).
    CAS PubMed Google Scholar
  24. McCulloch, S.D., Gu, L. & Li, G.M. Bi-directional processing of DNA loops by mismatch repair-dependent and -independent pathways in human cells. J. Biol. Chem. 278, 3891–3896 (2003).
    Article CAS Google Scholar
  25. David, P., Efrati, E., Tocco, G., Krauss, S.W. & Goodman, M.F. DNA replication and postreplication mismatch repair in cell-free extracts from cultured human neuroblastoma and fibroblast cells. J. Neurosci. 17, 8711–8720 (1997).
    Article CAS Google Scholar
  26. Dzantiev, L. et al. A defined human system that supports bidirectional mismatch-provoked excision. Mol. Cell 15, 164–166 (2004).
    Article Google Scholar
  27. Longley, M.J., Pierce, A.J. & Modrich, P. DNA polymerase δ is required for human mismatch repair in vitro. J. Biol. Chem. 272, 10917–10921 (1997).
    Article CAS Google Scholar
  28. Parniewski, P., Bacolla, A., Jaworski, A. & Wells, R.D. Nucleotide excision repair affects the stability of long transcribed (CTG•CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res. 27, 613–623 (1999).
    Article Google Scholar
  29. Oussatcheva, E.A., Hashem, V.I., Zou, Y., Sinden, R.R. & Potaman, V.N. Involvement of the nucleotide excision repair protein UvrA in instability of CAG•CTG repeat sequences in Escherichia coli. J. Biol. Chem. 276, 30878–30884 (2001).
    Article CAS Google Scholar
  30. Hartenstine, M.J., Goodman, M.F. & Petruska, J. Weak strand displacement activity enables human DNA polymerase β to expand CAG/CTG triplet repeats at strand breaks. J. Biol. Chem. 277, 41379–41389 (2002).
    Article CAS Google Scholar
  31. Lahue, R.S. & Slater, D.L. DNA repair and trinucleotide repeat instability. Front. Biosci. 8, s653–s665 (2003).
    Article CAS Google Scholar
  32. Moore, H., Greenwell, P.W., Liu, C.P., Arnheim, N. & Petes, T.D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96, 1504–1509 (1999).
    Article CAS Google Scholar
  33. Henricksen, L.A., Tom, S., Liu, Y. & Bambara, R.A. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275, 16420–16427 (2000).
    Article CAS Google Scholar
  34. Richard, G.F., Goellner, G.M., McMurray, C.T. & Haber, J.E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11–RAD50–XRS2 complex. EMBO J. 19, 2381–2390 (2000).
    Article CAS Google Scholar
  35. Panigrahi, G.B., Cleary, J.D. & Pearson, C.E. In vitro (CTG)•(CAG) expansions and deletions by human cell extracts. J. Biol. Chem. 277, 13926–13934 (2002).
    Article CAS Google Scholar
  36. Cleary, J.D., Nichol, K., Wang, Y.H. & Pearson, C.E. Evidence of _cis_-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat. Genet. 31, 37–46 (2002).
    Article CAS Google Scholar
  37. Pearson, C.E., Ewel, A., Acharya, S., Fishel, R.A. & Sinden, R.R. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123 (1997).
    Article CAS Google Scholar
  38. Pearson, C.E. et al. Slipped-strand DNAs formed by long (CAG)•(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res. 30, 4534–4547 (2002).
    Article CAS Google Scholar
  39. Tam, M. et al. Slipped (CTG)•(CAG) repeats of the myotonic dystrophy locus: surface probing with anti-DNA antibodies. J. Mol. Biol. 332, 585–600 (2003).
    Article CAS Google Scholar
  40. Corrette-Bennett, S.E. et al. Efficient repair of large DNA loops in Saccharomyces cerevisiae. Nucleic Acids Res. 29, 4134–4143 (2001).
    Article CAS Google Scholar
  41. Littman, S.J., Fang, W.H. & Modrich, P. Repair of large insertion/deletion heterologies in human nuclear extracts is directed by a 5′ single-strand break and is independent of the mismatch repair system. J. Biol. Chem. 274, 7474–7481 (1999).
    Article CAS Google Scholar
  42. Nouspikel, T. & Hanawalt, P.C. DNA repair in terminally differentiated cells. DNA Repair (Amst.) 1, 59–75 (2002).
    Article CAS Google Scholar
  43. Påhlman, S. et al. Human neuroblastoma cells in culture: a model for neuronal cell differentiation and function. Acta Physiol. Scand. Suppl. 592, 25–37 (1990).
    PubMed Google Scholar
  44. Nag, D.K., White, M.A. & Petes, T.D. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340, 318–320 (1989).
    Article CAS Google Scholar
  45. Dixon, M.J. & Lahue, R.S. Examining the potential role of DNA polymerases eta and zeta in triplet repeat instability in yeast. DNA Repair (Amst.) 1, 763–770 (2002).
    Article CAS Google Scholar
  46. de Laat, W.L., Appeldoorn, E., Jaspers, N.G. & Hoeijmakers, J.H. DNA structural elements required for ERCC1-XPF endonuclease activity. J. Biol. Chem. 273, 7835–7842 (1998).
    Article CAS Google Scholar
  47. Faruqi, A.F., Datta, H.J., Carroll, D., Seidman, M.M. & Glazer, P.M. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol. Cell. Biol. 20, 990–1000 (2000).
    Article CAS Google Scholar
  48. Patrick, S.M. & Turchi, J.J. Xeroderma pigmentosum complementation group A protein (XPA) modulates RPA-DNA interactions via enhanced complex stability and inhibition of strand separation activity. J. Biol. Chem. 277, 16096–16101 (2002).
    Article CAS Google Scholar
  49. Wang, H. et al. DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc. Natl. Acad. Sci. USA 100, 14822–14827 (2003).
    Article CAS Google Scholar
  50. Jackson, S.M. et al. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage. Gene 347, 35–41 (2005).
    Article CAS Google Scholar

Download references