Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol.10, 63–73 (2009). CAS Google Scholar
Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev.81, 685–740 (2001). CASPubMed Google Scholar
Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J.20, 811–827 (2006). CASPubMed Google Scholar
Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem.279, 12001–12004 (2004). CASPubMed Google Scholar
Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol.7, 265–275 (2006). CAS Google Scholar
Lansman, J. B., Hallam, T. J. & Rink, T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature325, 811–813 (1987). CASPubMed Google Scholar
Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature437, 426–431 (2005). CASPubMed Google Scholar
Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biol.1, 200–206 (1999). CASPubMed Google Scholar
Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol.16, 213–223 (2006). CASPubMed Google Scholar
Chen, K. D. et al. Mechanotransduction in response to shear stress - roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem.274, 18393–18400 (1999). CASPubMed Google Scholar
Chen, C. S. Mechanotransduction — a field pulling together? J. Cell Sci.121, 3285–3292 (2008). CASPubMed Google Scholar
Vogel, V. & Sheetz, M. P. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr. Opin. Cell Biol.21, 38–46 (2009). CASPubMedPubMed Central Google Scholar
Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol.10, 21–33 (2009). CAS Google Scholar
Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol.159, 695–705 (2002). CASPubMedPubMed Central Google Scholar
Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science323, 642–644 (2009). CASPubMed Google Scholar
del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science323, 638–641 (2009). Presents a general role of force transduction, in which the mechanical stretching of single proteins can expose cryptic binding sites for other molecules. CASPubMed Google Scholar
Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell127, 1015–1026 (2006). CASPubMedPubMed Central Google Scholar
Lee, S. E., Kamm, R. D. & Mofrad, M. R. K. Force-induced activation of Talin and its possible role in focal adhesion mechanotransduction. J. Biomech.40, 2096–2106 (2007). PubMed Google Scholar
Bershadsky, A., Kozlov, M. & Geiger, B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr. Opin. Cell Biol.18, 472–481 (2006). CASPubMed Google Scholar
Paszek, M. J., Boettiger, D., Weaver, V. M. & Hammer, D. A. Integrin clustering is driven by mechanical resistance from the Glycocalyx and the substrate. PLoS Comput. Biol.5, e1000604 (2009). PubMedPubMed Central Google Scholar
Miteva, D. O. et al. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res.106, 920–931 (2010). CASPubMed Google Scholar
Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell11, 526–538 (2007). Demonstrates a mechanism for metastasis through which tumour cells are guided to the lymphatic vessels serving the tumour in a force-based process that is facilitated by interstitial flow. CASPubMed Google Scholar
Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell137, 216–233 (2009). CASPubMedPubMed Central Google Scholar
Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nature Struc. Mol. Biol.14, 295–300 (2007). CAS Google Scholar
Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science327, 1380–1385 (2010). Physical barriers, termed spatial mutations, were used to demonstrate a broadly applicable process through which EPHA2 signalling pathways could be regulated in a spatio-mechanical mechanism, underscoring the potential of the ECM and cell surface to modulate a broad range of mechanotransduction pathways. CASPubMedPubMed Central Google Scholar
Costa, M. N., Radhakrishnan, K., Wilson, B. S., Vlachos, D. G. & Edwards, J. S. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction. PLoS ONE4, e6316 (2009). PubMedPubMed Central Google Scholar
Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature464, 783–787 (2010). CASPubMed Google Scholar
Sako, Y. & Kusumi, A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol.129, 1559–1574 (1995). CASPubMed Google Scholar
Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct.34, 351–378 (2005). CASPubMed Google Scholar
Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol.133, 1403–1415 (1996). CASPubMed Google Scholar
Girard, P. R. & Nerem, R. M. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J. Cell. Physiol.163, 179–193 (1995). CASPubMed Google Scholar
Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA102, 15895–15900 (2005). CASPubMedPubMed Central Google Scholar
Totsukawa, G. et al. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol.150, 797–806 (2000). CASPubMedPubMed Central Google Scholar
Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol.174, 725–734 (2006). CASPubMedPubMed Central Google Scholar
Weaver, V. M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell2, 205–216 (2002). CASPubMedPubMed Central Google Scholar
Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science314, 298–300 (2006). CASPubMedPubMed Central Google Scholar
Sikavitsas, V. I., Bancroft, G. N., Holtorf, H. L., Jansen, J. A. & Mikos, A. G. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl Acad Sci. USA100, 14683–14688 (2003). CASPubMedPubMed Central Google Scholar
Gomez, E. W., Chen, Q. K., Gjorevski, N. & Nelson, C. M. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J. Cell. Biochem.110, 44–51 (2010). CASPubMedPubMed Central Google Scholar
Peerani, R. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J.26, 4744–4755 (2007). CASPubMedPubMed Central Google Scholar
Paluch, E. & Heisenberg, C. P. Biology and physics of cell shape changes in development. Curr. Biol.19, R790–R799 (2009). CASPubMed Google Scholar
Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature457, 495–499 (2009). CASPubMed Google Scholar
Legant, W. R. et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl Acad. Sci. USA106, 10097–10102 (2009). CASPubMedPubMed Central Google Scholar
Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA102, 11594–11599 (2005). CASPubMedPubMed Central Google Scholar
Ruiz, S. A. & Chen, C. S. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells26, 2921–2927 (2008). PubMedPubMed Central Google Scholar
Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol.188, 735–749 (2010). CASPubMedPubMed Central Google Scholar
Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J.90, 3762–3773 (2006). CASPubMedPubMed Central Google Scholar
Lele, T. P. et al. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell. Physiol.207, 187–194 (2006). CASPubMed Google Scholar
Maddugoda, M. P., Crampton, M. S., Shewan, A. M. & Yap, A. S. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J. Cell Biol.178, 529–540 (2007). CASPubMedPubMed Central Google Scholar
Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science322, 1502–1505 (2008). CASPubMed Google Scholar
Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates Twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell15, 470–477 (2008). A dramatic demonstration of how mechanical deformations play a crucial and integral role in embryonic morphogenetic movements and have implications across virtually all stages of development. CASPubMed Google Scholar
Pouille, P. A., Ahmadi, P., Brunet, A. C. & Farge, E. Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal.2, ra16 (2009). PubMed Google Scholar
Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science315, 384–386 (2007). PubMed Google Scholar
Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell17, 736–743 (2009). CASPubMedPubMed Central Google Scholar
Solon, J., Kaya-Copur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell137, 1331–1342 (2009). PubMed Google Scholar
Rozario, T., Dzamba, B., Weber, G. F., Davidson, L. A. & DeSimone, D. W. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev. Biol.327, 386–398 (2009). CASPubMed Google Scholar
Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol.341, 126–140 (2010). CASPubMed Google Scholar
Dzamba, B. J., Jakab, K. R., Marsden, M., Schwartz, M. A. & DeSimone, D. W. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev. Cell16, 421–432 (2009). Provides support for a matrix-assembly model in tissues, in which fibronectin fibril formation at cell surfaces is facilitated by cell–cell adhesions directing tension to the integrins that are required for assembly of the fibronectin matrix. CASPubMedPubMed Central Google Scholar
Mao, Y. & Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol.24, 389–399 (2005). CASPubMed Google Scholar
Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol.141, 539–551 (1998). CASPubMedPubMed Central Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). CASPubMed Google Scholar
Julich, D., Mould, A. P., Koper, E. & Holley, S. A. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development136, 2913–2921 (2009). CASPubMed Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). CASPubMed Google Scholar
Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Mater.9, 82–88 (2010). CAS Google Scholar
Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biol.10, 429–436 (2008). CASPubMed Google Scholar
Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol.278, 255–263 (2005). CASPubMed Google Scholar
Poh, Y. C. et al. Rapid activation of Rac GTPase in living cells by force is independent of Src. PLoS ONE4, e7886 (2009). PubMedPubMed Central Google Scholar
Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA105, 6626–6631 (2008). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Visualizing the mechanical activation of Src. Nature434, 1040–1045 (2005). CASPubMed Google Scholar
Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature Rev. Mol. Cell Biol.10, 75–82 (2009). CAS Google Scholar
Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J.79, 144–152 (2000). CASPubMedPubMed Central Google Scholar
Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell139, 891–906 (2009). Presents compelling evidence drawing a correlation between tissue stiffness and breast cancer malignancy. Stiffening through the collagen crosslinking enzyme LOX leads to forced integrin clustering and focal adhesion formation and results in enhanced growth-factor signalling and breast cancer malignancy. CASPubMedPubMed Central Google Scholar
Peng, L. et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett.10, 143–148 (2010). CASPubMedPubMed Central Google Scholar
Geblinger, D., Addadi, L. & Geiger, B. Nano-topography sensing by osteoclasts. J. Cell Sci.123, 1503–1510 (2010). CASPubMedPubMed Central Google Scholar
Dalby, M. J., Riehle, M. O., Johnstone, H., Affrossman, S. & Curtis, A. S. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials23, 2945–2954 (2002). CASPubMed Google Scholar
Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J.92, 2964–2974 (2007). CASPubMedPubMed Central Google Scholar
Arnold, M. et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett.8, 2063–2069 (2008). CASPubMed Google Scholar
Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA94, 13661–13665 (1997). CASPubMedPubMed Central Google Scholar
Tan, W., Oldenburg, A. L., Norman, J. J., Desai, T. A. & Boppart, S. A. Optical coherence tomography of cell dynamics in three-dimensional tissue models. Opt. Express14, 7159–7171 (2006). PubMed Google Scholar
Friedl, P. & Brocker, E. B. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci.57, 41–64 (2000). CASPubMed Google Scholar
Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol.184, 481–490 (2009). CASPubMedPubMed Central Google Scholar
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science294, 1708–1712 (2001). CASPubMed Google Scholar
Ochsner, M., Textor, M., Vogel, V. & Smith, M. L. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PLoS ONE5, e9445 (2010). PubMedPubMed Central Google Scholar
Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res.67, 2649–2656 (2007). CASPubMed Google Scholar
Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell124, 263–266 (2006). CASPubMed Google Scholar
Wyckoff, J. B., Jones, J. G., Condeelis, J. S. & Segall, J. E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res.60, 2504–2511 (2000). CASPubMed Google Scholar
Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer9, 108–122 (2009). CASPubMed Google Scholar
Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell15, 35–44 (2009). CASPubMedPubMed Central Google Scholar
Ng, M. R. & Brugge, J. S. A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell16, 455–457 (2009). CASPubMed Google Scholar
Leung, C. T. & Brugge, J. S. Tumor self-seeding: bidirectional flow of tumor cells. Cell139, 1226–1228 (2009). PubMed Google Scholar
Avery, N. C. & Bailey, A. J. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand. J. Med. Sci. Sports15, 231–240 (2005). CASPubMed Google Scholar
Perentes, J. Y. et al. In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nature Methods6, 143–145 (2009). CASPubMedPubMed Central Google Scholar
Buehler, M. J. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater.1, 59–67 (2008). PubMed Google Scholar
Reiser, K., McCormick, R. J. & Rucker, R. B. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. FASEB J.6, 2439–2449 (1992). CASPubMed Google Scholar
Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell141, 52–67 (2010). CASPubMedPubMed Central Google Scholar
Gehler, S. et al. Filamin A–β1 integrin complex tunes epithelial cell response to matrix tension. Mol. Biol. Cell20, 3224–3238 (2009). CASPubMedPubMed Central Google Scholar
Hattrup, C. L. & Gendler, S. J. Structure and function of the cell surface (tethered) mucins. Ann. Rev. Physiol.70, 431–457 (2008). CAS Google Scholar
Theocharis, A. D., Tsara, M. E., Papageorgacopoulou, N., Karavias, D. D. & Theocharis, D. A. Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition. Biochim. Biophys. Acta1502, 201–206 (2000). CASPubMed Google Scholar
Toole, B. P. Hyaluronan promotes the malignant phenotype. Glycobiology12, 37R–42R (2002). CASPubMed Google Scholar
Varga, I. et al. Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis. Cen. Eur. Neurosurg.71, 173–180 (2010). CAS Google Scholar
Lodish, H. et al. Molecular Cell Biology, 4th edition (W. H. Freeman, New York, 2000). Google Scholar
Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nature Rev. Mol. Cell Biol.10, 34–43 (2009). An excellent review highlighting the general role of force and mechanotransduction in biology, centring on how contractility plays a role in development through regulating tissue structure and function. CAS Google Scholar
Farge, E. Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr. Biol.13, 1365–1377 (2003). CASPubMed Google Scholar