Slack, J. M. W. & Tosh, D. Transdifferentiation and metaplasia—switching cell types. Curr. Opin. Genet. Dev.11, 581–586 (2001). ArticleCAS Google Scholar
Lawrence, P. A. & Morata, G. The elements of the bithorax complex. Cell35, 595–601 (1983). ArticleCAS Google Scholar
Wakimoto, B. T. & Kaufman, T. C. Analysis of larval segmentation in lethal genotypes associated with the antennapedia gene complex in Drosophila melanogaster. Dev. Biol.81, 51–64 (1981). ArticleCAS Google Scholar
Hadorn, E. Problems of determination and transdetermination. Brookhaven Symp. Biol.18, 148–161 (1965). Google Scholar
Eguchi, G. & Kodama, R. Transdifferentiation. Curr. Opin. Cell Biol.5, 1023–1028 (1993). ArticleCAS Google Scholar
Brockes, J. P., Kumar, A. & Velloso, C. P. Regeneration as an evolutionary variable. J. Anat.199, 3–11 (2001). ArticleCAS Google Scholar
Zambrowicz, B. P. et al. Disruption of overlapping transcripts in the ROSAβ–geo26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and haematopoietic cells. Proc. Natl Acad. Sci. USA94, 3789–3794 (1997). ArticleCAS Google Scholar
Reyes, M. et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood98, 2615–2625 (2001). ArticleCAS Google Scholar
Priller, J. et al. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol.155, 733–738 (2001).The authors found that transplanted bone marrow cells were able to generate highly differentiated neurons. ArticleCAS Google Scholar
Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nature Med.7, 1356–1361 (2001). ArticleCAS Google Scholar
Alison, M. R. et al. Hepatocytes from non-hepatic adult stem cells. Nature406, 257 (2000). ArticleCAS Google Scholar
Theise, N. D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology31, 235–240 (2000). ArticleCAS Google Scholar
Herrera, P. L. Adult insulin and glucagon producing cells differentiate from two independent cell lineages. Development127, 2317–2322 (2000). CAS Google Scholar
Beresford, W. A. Direct transdifferentiation: can cells change their phenotype without dividing? Cell Differ. Dev.29, 81–93 (1990). ArticleCAS Google Scholar
Slack, J. M. W. Essential Developmental Biology (Blackwell Science, Oxford, 2001) Google Scholar
Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science287, 1442–1446 (2000). ArticleCAS Google Scholar
Watt, F. M. & Hogan, B. L. M. Out of Eden: stem cells and their niches. Science287, 1427–1430 (2000). ArticleCAS Google Scholar
Toma, J. G et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol.3, 778–784 (2001).Following the isolation of a new type of skin stem cell, the authors show that these cells can be converted to various differentiated cell typesin vitroincluding neurons and glia, smooth muscle cells and adipocytes. ArticleCAS Google Scholar
Alison, M. R. & Sarraf, C. Hepatic stem cells. J. Hepatol.29, 676–682 (1998). ArticleCAS Google Scholar
Suzuki, A. et al. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J. Cell Biol.156, 173–184 (2002).Report of the isolation of hepatic stem cells. When the cells were transplanted into recipients they differentiated into hepatocytes and bile-duct cells. These cells also have the potential to differentiatein vivointo acinar and ductal pancreatic cells and intestinal epithelial cells. ArticleCAS Google Scholar
Whitehead, R. H., Demmler, K., Rockman, S. P. & Watson, N. K. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans. Gastroenterology117, 858–865 (1999). ArticleCAS Google Scholar
Seale, P. & Rudnicki, M. A. A new look at the origin, function, and 'stem-cell' status of muscle satellite cells. Dev. Biol.218, 115–124 (2000). ArticleCAS Google Scholar
Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell105, 829–841 (2001). ArticleCAS Google Scholar
Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530 (1998).Demonstration of the formation of muscle from transplanted bone marrow taken from a transgenic mouse line in which a muscle promoter (the myosin light chain 3F promoter) was used to drive nuclear β-galactosidase. ArticleCAS Google Scholar
Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science284, 1168–1170 (1999). ArticleCAS Google Scholar
Theise, N. D. et al. Liver from bone marrow in humans. Hepatology32, 11–16 (2000). ArticleCAS Google Scholar
Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med.6, 1229–1234 (2000).The authors isolated a highly purified population of haematopoietic stem cells derived from bone marrow and showed that they could be used as a source of hepatocytes. ArticleCAS Google Scholar
Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genet.10, 453–460 (1995). ArticleCAS Google Scholar
Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell105, 369–377 (2001). ArticleCAS Google Scholar
Poulsom, R. et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol.195, 229–235 (2001). ArticleCAS Google Scholar
Eglitis, M. A. & Mezey, F. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl Acad. Sci. USA94, 4080–4085 (1997). ArticleCAS Google Scholar
Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289, 1754–1757 (2000). ArticleCAS Google Scholar
Jackson, K. A., Mi, T. & Goodell, M. A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl Acad. Sci. USA96, 14482–14486 (1999). ArticleCAS Google Scholar
Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature401, 390–394 (1999). CAS Google Scholar
Pang, W. Role of muscle-derived cells in hematopoietic reconstitution of irradiated mice. Blood95, 1106–1108 (2000). CAS Google Scholar
Rao, M. S. et al. Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochem. Biophys. Res. Commun.156, 131–136 (1988). ArticleCAS Google Scholar
Rao, M. S. et al. Role of periductular and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage. Am. J. Pathol.134, 1069–1086 (1989). CAS Google Scholar
Rao, M. S., Yeldandi, A. V. & Reddy, J. K. Stem cell potential of ductular and periductular cells in the adult rat pancreas. Cell Differ. Dev.29, 155–163 (1990). ArticleCAS Google Scholar
Reddy, J. K. et al. Pancreatic hepatocytes, an in vivo model for cell lineage in pancreas of adult rat. Dig. Dis. Sci.4, 502–509 (1991). Article Google Scholar
Dabeva, M. D. et al. Differentiation of pancreatic epithelial progenitor cells into hepatocytes. Proc. Natl Acad. Sci. USA94, 7356–7361 (1997). ArticleCAS Google Scholar
Krakowski, M. L. et al. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am. J. Pathol. 154, 683–691 (1999). ArticleCAS Google Scholar
Rao, M. S., Bendayan, M., Kimbrough, R. D. & Reddy, J. K. Characterization of pancreatic-type tissue in the liver of rat induced by polychlorinated biphenyls. J. Histochem. Cytochem.34, 197–201 (1986). ArticleCAS Google Scholar
Shen, C. N., Slack, J. M. W. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol.2, 879–887 (2000). ArticleCAS Google Scholar
Reddy, J. K. et al. Induction and origin of hepatocytes in rat pancreas. J. Cell Biol.98, 2082–2090 (1984). ArticleCAS Google Scholar
Bossard, P., McPherson, C. E. & Zaret, K. S. Methods: A Companion to Methods in Enzymology 11, 180–188 (1997).
Hu, E., Tontonoz, P. & Spiegelman, B. M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc. Natl Acad. Sci. USA92, 9856–9860 (1995). ArticleCAS Google Scholar
Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science289, 950–953 (2000). ArticleCAS Google Scholar
Kosaka, M., Kodama, R. & Eguchi, G. In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Exp. Cell Res.245, 245–251 (1998). ArticleCAS Google Scholar
Ashery-Padan, R. & Gruss, P. Pax6 lights-up the way for eye development. Curr. Opin. Cell Biol.13, 706–714 (2001). ArticleCAS Google Scholar
Oliver, G., Loosli, F., Koster, R., Wittbrodt, J. & Gruss, P. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev.60, 233–239 (1996). ArticleCAS Google Scholar
Altmann, C. R., Chow, R. L., Lang, R. A. & Hemmati-Brivanlou, A. Lens induction by Pax-6 in Xenopus laevis. Dev. Biol.185, 119–123 (1997). ArticleCAS Google Scholar
Beck, F., Chawengsaksophak, K., Waring, P., Playford, R. J. & Furness, J. B. Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc. Natl Acad. Sci. USA96, 7318–7323 (1999). ArticleCAS Google Scholar
Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA86, 5434–5438 (1989). ArticleCAS Google Scholar
Halder, G., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science267, 1788–1792 (1995). ArticleCAS Google Scholar
Slack, J. M. W. Homeotic transformations in Man: implications for the mechanism of embryonic development and for the organization of epithelia. J. Theor. Biol.114, 463–490 (1985). ArticleCAS Google Scholar
Slack, J. M. W. Epithelial metaplasia and the second anatomy. Lancet2, 268–271 (1986). ArticleCAS Google Scholar
Slack, J. M. W. in Oxford Textbook of Pathology (eds McGee J. O'D., Isaacson, P. G. & Wright, N. A.) 565–568 (Oxford Univ. Press, Oxford, 1992). Google Scholar
Jankowski, J. A., Harrison, R. F., Perry, I., Balkwill, F. & Tselepis, C. Barrett's metaplasia. Lancet356, 2079–2085 (2000). ArticleCAS Google Scholar
Jankowski, J. A. et al. Molecular evolution of the metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am. J. Pathol.154, 965–973 (1999). ArticleCAS Google Scholar
Bittner, R. E. et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl.)199, 391–396 (1999). ArticleCAS Google Scholar
Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood92, 362–367 (1998). CAS Google Scholar
Jackson, K. A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107, 1395–1402 (2001). ArticleCAS Google Scholar
Brazelton, T. R., Rossi, F. M. V., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science290, 1775–1779 (2000). ArticleCAS Google Scholar
Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science290, 1779–1782 (2000). ArticleCAS Google Scholar
Orlic, D. et al. Bone marrow cells regenerate infracted myocardium. Nature410, 701–705 (2001). ArticleCAS Google Scholar
Bjornson, C. R. R., Rietze, R. L., Reynolds, B. A., Magli, M. C. & Vescovi, A. L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science283, 534–537 (1999). ArticleCAS Google Scholar
Galli, R. et al. Skeletal myogenic potential of human and mouse neural stem cells Nature Neurosci.3, 986–991 (2000). ArticleCAS Google Scholar
Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science288, 1660–1663 (2000). ArticleCAS Google Scholar