STATs: transcriptional control and biological impact (original) (raw)
Fu, X.-Y., Schindler, C., Improta, T., Aebersold, R. & Darnell, J. E. Jr. The proteins of ISGF-3: the interferon α-induced transcriptional activator, define a gene family involved in signal transduction. Proc. Natl Acad. Sci. USA89, 7840–7843 (1992). ArticleCASPubMedPubMed Central Google Scholar
Schindler, C., Fu, X.-Y., Improta, T., Aebersold, R. & Darnell, J. E. Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91 and 84 kDa ISGF-3 proteins that are activated by inteferon-α. Proc. Natl Acad. Sci. USA89, 7836–7839 (1992). ArticleCASPubMedPubMed Central Google Scholar
Schindler, C., Shuai, K., Prezioso, V. R. & Darnell, J. E. Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science257, 809–815 (1992).This paper showed that STAT proteins are tyrosine phosphorylated in response to IFN. ArticleCASPubMed Google Scholar
Darnell, J. E. Jr, Kerr, I. M. & Stark, G. M. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 1415–1421 (1994). ArticleCASPubMed Google Scholar
Stark, G. R., Kerrr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998). ArticleCASPubMed Google Scholar
O'Shea, J. J. Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity7, 1–11 (1997). ArticleCASPubMed Google Scholar
Horvath, C. M. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem. Sci.25, 496–502 (2000). ArticleCASPubMed Google Scholar
Vinkemeier, U. et al., DNA binding of in vitro activated Stat1α, Stat1β, and truncated Stat1: interaction between NH2 terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J.15, 5616–5626 (1996).This provided the basis for STAT crystallization of proteolytic fragments and also the indication that cooperative interaction between dimeric STAT molecules contributes to DNA binding. ArticleCASPubMedPubMed Central Google Scholar
Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F. & Braeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J.334, 297–314 (1998). ArticleCASPubMedPubMed Central Google Scholar
Greenlund, A. C. et al. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity2, 677–687 (1995).Evidence is provided for the mechanism of STAT recruitment and release by cytokine receptors. ArticleCASPubMed Google Scholar
Rane, S. G. & Reddy, E. P. JAKs, STATs and Src kinases in hematopoiesis. Oncogene21, 3334–3358 (2002). ArticleCASPubMed Google Scholar
Luo, H., Hanratty, W. P. & Dearolf, C. R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like defects. EMBO J.14, 1412–1420 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zeidler, M. P., Bach, E. A. & Perrimon, N. The roles of the Drosophila JAK/STAT pathway. Oncogene19, 2598–2606 (2000). ArticleCASPubMed Google Scholar
Constantinescu, S. N. et al. Ligand-independent oligomerizaiton of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc. Natl Acad. Sci. USA98, 4379–4384 (2001). ArticleCASPubMedPubMed Central Google Scholar
Collum, R. G., Brutsaert, S., Lee, G. & Schindler, C. A Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proc. Natl Acad. Sci. USA97, 10120–10125 (2000). ArticleCASPubMedPubMed Central Google Scholar
Usacheva, A. et al. The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J. Biol. Chem.276, 22948–22953 (2001). ArticleCASPubMed Google Scholar
Kim, J.-H., Lane, W. S. & Reinberg, D. Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc. Natl Acad. Sci. USA99, 1241–1246 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lackmann, M. et al. Biomolecular interaction analysis of IFN γ-induced signaling events in whole-cell lysates: prevalence of latent STAT1 in high-molecular weight complexes. Growth Factors16, 39–51 (1998). ArticleCASPubMed Google Scholar
Chatterjee-Kishore, M., Wright, K. L., Ting, J. P. & Stark, G. R. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J.19, 4111–4122 (2000).This paper indicates an alternative, non-canonical mechanism for transcriptional activation by STATs. ArticleCASPubMedPubMed Central Google Scholar
Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell93, 827–839 (1998).This paper reports the three-dimensional structure of STAT1. ArticleCASPubMed Google Scholar
Ndubuisi, M. I., Guo, G. G., Fried, V. A., Etlinger, J. D. & Sehgal, P. B. Cellular physiology of STAT3: where's the cytoplasmic monomer? J. Biol. Chem.274, 25499–25509 (1999). ArticleCASPubMed Google Scholar
Bluyssen, H. A. R., Durbin, J. E. & Levy, D. E. ISGF3γp48, a specificity switch for IFN activated transcription factors. Cytokine Growth Factor Rev.7, 11–17 (1996). ArticleCASPubMed Google Scholar
Wong, L. H. et al. Isolation and characterization of a human STAT1 gene regulatory element. Inducibility by interferon (IFN) types I and II and role of IRF regulatory factor-1. J. Biol. Chem.277, 19408–19417 (2002). ArticleCASPubMed Google Scholar
Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing 'preassembled signaling complexes' at the plasma membrane. J. Biol. Chem.273, 5419–5422 (1998). ArticleCASPubMed Google Scholar
Sehgal, P. B., Guo, G. G., Shah, M., Kumar, V. & Patel, K. Cytokine signaling. STATs in plasma membrane rafts. J. Biol. Chem.177, 12067–12074 (2002). ArticleCAS Google Scholar
Taniguchi, T. & Takaoka, A. A weak signal for strong responses: interferon-α/β revisited. Nature Rev. Mol. Cell. Biol.2, 378–386 (2001). ArticleCAS Google Scholar
Schlegel, A. & Lisanti, M. P. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev.12, 41–51 (2001). ArticleCASPubMed Google Scholar
Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells19, 378–387 (2001). ArticleCASPubMed Google Scholar
Bianchi, M., Meng, C. & Ivashkiv, L. B. Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc. Natl Acad. Sci. USA97, 9573–9578 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lee, I. H., Li, W. P., Hisert, K. B. & Ivashkiv, L. B. Inhibition of interleukin 2 signaling and signal transducer and activator of transcription (STAT)5 activation during T cell receptor-mediated feedback inhibition of T cell expansion. J. Exp. Med.190, 1263–1274 (1999). ArticleCASPubMedPubMed Central Google Scholar
David, M., Petricoin, E. III & Larner, A. C. Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J. Biol. Chem.271, 4585–4588 (1996). ArticleCASPubMed Google Scholar
Becker, S., Groner, B. & Muller, C. W. Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature394, 145–151 (1998).This paper reports on the three-dimensional structure of STAT3. ArticleCASPubMed Google Scholar
Yang, E., Henriksen, M. A., Schaefer, O., Zakharova, N. & Darnell, J. E. Jr. Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant. J. Biol. Chem.277, 13455–13462 (2002). ArticleCASPubMed Google Scholar
Vinkemeier, U., Moarefi, I., Darnell, J. E. Jr & Kuriyan, J. Structure of the amino-terminal protein interaction domain of STAT-4. Science279, 1048–1052 (1998). ArticleCASPubMed Google Scholar
Murphy, T. L., Geissal, E. D., Farrar, D. & Murphy, K. M. Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation. Mol. Cell. Biol.20, 7121–7131 (2000). ArticleCASPubMedPubMed Central Google Scholar
Xu, X., Ya-Lin, S. & Hoey, T. Cooperative DNA binding and sequence selective recognition conferred by the Stat amino terminal domain. Science273, 794–797 (1996). ArticleCASPubMed Google Scholar
Zhang, X. & Darnell, J. E. Jr. Functional importance of Stat3 tetramerization in activation of the α2-macroglobulin gene. J. Biol. Chem.276, 33576–33581 (2001). ArticleCASPubMed Google Scholar
John, S., Vinkemeier, U., Soldaini, E., Darnell, J. E. Jr & Leonard, W. J. The significance of tetramerization in promoter recruitment by Stat5. Mol. Cell. Biol.19, 1910–1918 (1999). ArticleCASPubMedPubMed Central Google Scholar
Strehlow, I. & Schindler, C. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J. Biol. Chem.273, 28049–28056 (1998). ArticleCASPubMed Google Scholar
Shuai, K., Liao, J. Y. & Song, M. M. Enhancement of antiproliferative activity of γ interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol. Cell. Biol.16, 4932–4941 (1996). ArticleCASPubMedPubMed Central Google Scholar
Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem.67, 265–306 (1998). ArticleCASPubMed Google Scholar
Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T. & Yoneda, Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J.16, 7067–7077 (1997). ArticleCASPubMedPubMed Central Google Scholar
McBride, K. M., Banninger, G., McDonald, C. & Reich, N. C. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-α. EMBO J.21, 1754–1763 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fagerlund, R., Melén, K., Kinnunen, L. & Julkunen, I. Argine/lysine-rich NLSs mediate interactions between dimeric STATs and importin α5. J. Biol. Chem.277, 30072–30078 (2002). ArticleCASPubMed Google Scholar
Melen, K., Kinnunen, L. & Julkunen, I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J. Biol. Chem.276, 16447–16455 (2001). CASPubMed Google Scholar
Meyer, T., Begitt, A., Lodige, I., van Rossum, M. & Vinkemeier, U. Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J.21, 344–354 (2002).References44–48outline distinct mechanisms for constitutive and induced STAT nuclear translocation. ArticleCASPubMedPubMed Central Google Scholar
Kumar, A., Commane, M., Flickinger, T. W., Horvath, C. M. & Stark, G. R. Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science278, 1630–1632 (1997).This provides evidence that unphosphorylated STAT1 has a function distinct from the activated form. ArticleCASPubMed Google Scholar
McBride, K. M., McDonald, C. & Reich, N. C. Nuclear export signal located within the DNA-binding domain of the STAT1transcription factor. EMBO J.19, 6196–6206 (2000). ArticleCASPubMedPubMed Central Google Scholar
Begitt, A., Meyer, T., van Rossum, M. & Vinkemeier, U. Nucleocytoplasmic translocation of STAT1 is regulated by leucine-rich export signal in the coiled-coil domain. Proc. Natl Acad. Sci. USA97, 10418–10423 (2000).References50and51describe sequences involved in nuclear export. ArticleCASPubMedPubMed Central Google Scholar
Haspel, R. L. & Darnell, J. E. Jr. A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc. Natl Acad. Sci. USA96, 10188–10193 (1999).Provides evidence that downregulation of STAT activation occurs by dephosphorylation in the nucleus. ArticleCASPubMedPubMed Central Google Scholar
Ibarra-Sanchez, M. J. et al. The T-cell protein tyrosine phosphatase. Semin. Immunol.12, 379–386 (2000). ArticleCASPubMed Google Scholar
ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol.22 (in the press).This reports on the identification of a potential STAT nuclear phosphatase.
Aoki, N. & Matsuda, T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol. Endocrinol.16, 58–69 (2002). ArticleCASPubMed Google Scholar
Simonocic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L. & McGlade, C. J. The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr. Biol.12, 446–453 (2002). Article Google Scholar
Aoki, N. & Matsuda, T. A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J. Biol. Chem.275, 39718–39726 (2000). ArticleCASPubMed Google Scholar
You, M., Yu, D. H. & Feng, G. S. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell. Biol.19, 2416–2424 (1999). ArticleCASPubMedPubMed Central Google Scholar
David, M., Chen, H. E., Goelz, S., Larner, A. C. & Neel, B. G. Differential regulation of the α/β interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol.15, 7050–7058 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lee, C.-K., Bluyssen, H. A. R. & Levy, D. E. Regulation of interferon-α responsiveness by the duration of Janus kinase activity. J. Biol. Chem.272, 21872–21877 (1997).Evidence that the duration of STAT activity is tightly coupled to the kinetics of JAK catalytic activity. ArticleCASPubMed Google Scholar
Klingmuller, U., Lorenz, U., Cantley, L. C., Neel, B. G. & Lodish, H. Specific recruitment of SH-PTP-1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell80, 729–738 (1995). ArticleCASPubMed Google Scholar
Dong, F., Qiu, Y., Yi, T., Touw, I. P. & Larner, A. C. The carboxyl terminus of the granulocyte colony-stimulating factor receptor, truncated in patients with severe congenital neutropenia/acute myeloid leukemia, is required for SH2-containing phosphatase-1 suppression of Stat activation. J. Immunol.167, 6447–6452 (2001). ArticleCASPubMed Google Scholar
Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell2, 489–495 (2002).Together with reference61, this shows that receptor-associated phosphatases participate in controlling JAK–STAT signalling. ArticleCASPubMed Google Scholar
Starr, R. & Hilton, D. J. Negative regulation of the JAK/STAT pathway. Bioassays21, 47–52 (1999). ArticleCAS Google Scholar
Endo, T. A. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature387, 921–924 (1997). ArticleCASPubMed Google Scholar
Naka, T. et al. Structure and function of a new STAT-induced STAT inhibitor. Nature387, 924–929 (1997).References64–66identify the family of SOCS negative regulators. ArticleCASPubMed Google Scholar
Yoshimura, A. et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J.14, 2816–2826 (1995). ArticleCASPubMedPubMed Central Google Scholar
Egwuagu, C. E. et al. Suppressors of cytokine signaling proteins are differentially expressed in TH1 and TH2 cells: implications for TH cell lineage commitment and maintenance. J. Immunol.168, 3181–3187 (2002). ArticleCASPubMed Google Scholar
Metcalf, D. et al. Polycystic kidneys and chronic inflammatory lesions are the delayed consequences of loss of the suppresor of cytokine signaling-1 (SOCS-1). Proc. Natl Acad. Sci. USA99, 943–948 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. G. et al. The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proc. Natl Acad. Sci. USA98, 13261–13265 (2001). ArticleCASPubMedPubMed Central Google Scholar
Marine, J. C. et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell98, 617–627 (1999). ArticleCASPubMed Google Scholar
Roberts, A. W. et al. Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proc. Natl Acad. Sci. USA98, 9324–9329 (2001). ArticleCASPubMedPubMed Central Google Scholar
Krebs, D. L. et al. Socs-6 binds to insulin receptor substrate 4, and mice lacking the Socs-6 gene exhibit mild growth retardation. Mol. Cell. Biol.22, 4567–4578 (2002).References68–73give accounts of defects in Socs knockouts. ArticleCASPubMedPubMed Central Google Scholar
Chung, C. D. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science278, 1803–1805 (1997). ArticleCASPubMed Google Scholar
Shuai, K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene19, 2638–2644 (2000). ArticleCASPubMed Google Scholar
Zeidler, M. P., Perrimon, N. & Strutt, D. I. Polarity determination in the Drosophila eye: a novel role for unpaired and JAK/STAT signaling. Genes Dev.13, 1342–1353 (1999). ArticleCASPubMedPubMed Central Google Scholar
Betz, A., Lampen, N., Martinek, S., Young, M. W. & Darnell, J. E. Jr. A Drosophila PIAS homologue negatively regulates Stat92E. Proc. Natl Acad. Sci. USA98, 9563–9568 (2001).References74and77report the discovery of negative activity of PIAS on STATs in cell culture and in flies. ArticleCASPubMedPubMed Central Google Scholar
Jackson, P. K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev.15, 3053–3058 (2001). ArticleCASPubMed Google Scholar
Yoo, J. Y., Huso, D. L., Nathans, D. & Desiderio, S. Specific ablation of Stat3β distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell108, 331–344 (2002). ArticleCASPubMed Google Scholar
Henriksen, M., Betz, A., Fuccillo, M. V. & Darnell, J. E. Jr. Negative regulation of STAT92E by an N-terminally truncated STAT protein derived from an alternative promoter site. Genes Dev. (in the press).
Yan, R., Small, S., Desplan, C., Dearolf, C. R. & Darnell, J.E. Jr. Identification of a Stat gene that functions in Drosophila development. Cell84, 421–430 (1996). ArticleCASPubMed Google Scholar
Hou, X. S., Melnick, M. B. & Perrimon, N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell84, 411–419 (1996).Identification of the JAK–STAT pathway inDrosophila. ArticleCASPubMed Google Scholar
Seidel, H. M. et al. Spacing of palindromic half sites as a determinant of selective STAT DNA binding and transcriptional activity. Proc. Natl Acad. Sci. USA92, 3041–3045 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ehret, G. B. et al. DNA binding specificity of different STAT proteins. Comparisons of in vitro specificity with natural target sites. J. Biol. Chem.276, 6675–6688 (2001). ArticleCASPubMed Google Scholar
Der, S. D., Zhou, A., Williams, B. R. G. & Silverman, R. H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl Acad. Sci. USA95, 15623–15628 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mowen, K. A. et al. Arginine methylation of STAT1 modulates IFNα/β-induced transcription. Cell104, 731–741 (2001). ArticleCASPubMed Google Scholar
McDonald, C. & Reich, N. C. Cooperation of the transcriptional co-activators CBP and p300 with Stat6. J. Interferon Cytokine Res.19, 711–722 (1999). ArticleCASPubMed Google Scholar
Shankaranarayanan, P., Chaitidis, P., Kuhn, H. & Nigam, S. Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J. Biol. Chem.276, 42753–42760 (2001). ArticleCASPubMed Google Scholar
Zhang, Z., Jones, S., Hagood, J. S., Fuentes, N. L. & Fuller, G. M. STAT3 acts as a co-activator of glucocorticoid receptor signaling. J. Biol. Chem.272, 30607–30610 (1997). ArticleCASPubMed Google Scholar
Shen, Y. & Darnell, J.E. Jr. Antiviral response in cells containing Stat1 with heterologous transactivation domains. J. Virol.75, 2627–2633 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. J. et al. Ser 727-dependent recruitment of MCM5 by Stat1α in IFN-γ-induced transcriptional activation. EMBO J.17, 6963–6971 (1998). ArticleCASPubMedPubMed Central Google Scholar
Paulson, M. et al. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J. Biol. Chem.274, 25343–25349 (1999). ArticleCASPubMed Google Scholar
Paulson, M., Press, C., Smith, E., Tanese, N. & Levy, D. E. IFN-stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nature Cell Biol.4, 140–147 (2002). ArticleCASPubMed Google Scholar
Malik, S. & Roeder, R. G. Transcriptional regulation through Mediator-like co-activators in yeast and metazoan cells. Trends Biochem. Sci.25, 277–283 (2000). ArticleCASPubMed Google Scholar
Look, D. C., Pelletier, M. R., Tidwell, R. M., Roswit, W. T. & Holtzman, M. J. Stat 1 depends on transcriptional synergy with Sp1. J. Biol. Chem.270, 30264–30267 (1995). ArticleCASPubMed Google Scholar
Muhlethaler-Mottet, A., Di Berardino, W., Otten, L. A. & Mach, B. Activation of the MHC class II transactivator CIITA by interferon-γ requires cooperative interaction between Stat1 and USF-1. Immunity8, 57–166 (1998). Article Google Scholar
Stoecklin, E., Wissler, M., Gouilleux, F. & Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature383, 726–728 (1996). ArticleCAS Google Scholar
Delphin, S. & Stavenezer, J. Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-κB/p50. J. Exp. Med.181, 181–192 (1995). ArticleCASPubMed Google Scholar
Zhu, M., John, S., Berg, M. & Leonard, W. J. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling. Cell96, 121–130 (1999). ArticleCASPubMed Google Scholar
Schaefer, T. S., Sanders, L. K. & Nathans, D. Cooperative transcriptional activity of Jun and Stat3β, a short form of Stat3. Proc. Natl Acad. Sci. USA92, 9097–9101 (1995). ArticleCASPubMedPubMed Central Google Scholar
Nakashima, K. et al. Synergistic signaling in fetal brain by STAT3–Smad1 complex bridged by p300. Science284, 479–482 (1999). ArticleCASPubMed Google Scholar
Ueda, T., Bruchovsky, N. & Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem.277, 7076–7085 (2002). ArticleCASPubMed Google Scholar
Morris, A. C., Beresford, G. W., Mooney, M. R. & Boss, J. M. Kinetics of a γ interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol. Cell. Biol.22, 4781–4791 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nusslein-Volhard, C. & Wieshaus, E. Mutations affecting segment number and polarity in Drosophila. Nature287, 795–801 (1980). ArticleCASPubMed Google Scholar
Brown, S., Hu, N. & Hombria, J. C. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol.11, 1700–1705 (2001). ArticleCASPubMed Google Scholar
Yan, R., Lou, H., Darnell, J. E. Jr & Dearolf, C. R. A JAK–STAT pathway regulates wing vein formation in Drosophila. Proc. Natl Acad. Sci. USA93, 5842–5847 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science294, 2546–2549 (2001). ArticleCASPubMed Google Scholar
Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science294, 2542–2545 (2001). ArticleCASPubMed Google Scholar
Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell107, 831–841 (2001). ArticleCASPubMed Google Scholar
Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell93, 841–850 (1998). ArticleCASPubMed Google Scholar
Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev.11, 179–186 (1997). ArticleCASPubMed Google Scholar
Socolovsky, M., Fallon, A. E., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L)induction. Cell98, 181–191 (1999). ArticleCASPubMed Google Scholar
Socolovsky, M., et al. Ineffective erythropoiesis in Stat5a(−/−) 5b(−/−) mice due to decreased survival of early erythroblasts. Blood98, 3261–3273 (2001). ArticleCASPubMed Google Scholar
Moriggl, R. et al. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity10, 249–259 (1999). ArticleCASPubMed Google Scholar
Bunting, K. D. et al. Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood99, 479–487 (2002). ArticleCASPubMed Google Scholar
Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA94, 3801–3804 (1997). ArticleCASPubMedPubMed Central Google Scholar
Akira, S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene19, 2607–2611 (2000). ArticleCASPubMed Google Scholar
Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell84, 443–450 (1996). ArticleCASPubMed Google Scholar
Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell84, 431–442 (1996). ArticleCASPubMed Google Scholar
Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity13, 795–804 (2000). ArticleCASPubMed Google Scholar
Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science293, 300–303 (2001). ArticleCASPubMed Google Scholar
Alonzi, T. et al. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation in the liver. Mol. Cell. Biol.21, 1621–1632 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takeda, K. et al. Stat3 activation is responsible for Il-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J. Immunol.161, 4652–4660 (1998). CASPubMed Google Scholar
Takeda, K. et al. Enhanced TH1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity10, 39–49 (1999). ArticleCASPubMed Google Scholar
Lee, C.-K. et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity (in the press).
Levy, D. E. & Garcia-Sastre, A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev.12, 143–156 (2001). ArticleCASPubMed Google Scholar
Miller, D. M. et al. Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J. Exp. Med.187, 675–683 (1998). ArticleCASPubMedPubMed Central Google Scholar
Parisien, J. P., Lau, J. F., Rodriguez, J. J., Ulane, C. M. & Horvath, C. M. Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of α/β interferon signal transduction. J. Virol.76, 4190–4198 (2002). ArticleCASPubMedPubMed Central Google Scholar
Parisien, J. P. et al. The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology283, 230–239 (2001). ArticleCASPubMed Google Scholar
Garcin, D., Curran, J., Itoh, M. & Kolakofsky, D. Longer and shorter forms of Sendai virus C proteins play different roles in modulating the cellular antiviral response. J. Virol.75, 6800–6807 (2001). ArticleCASPubMedPubMed Central Google Scholar
Polyak, S. J. et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol.75, 6095–6106 (2001). ArticleCASPubMedPubMed Central Google Scholar
von Kobbe, C. et al. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol. Cell6, 1243–1252 (2000). ArticleCASPubMed Google Scholar
Her, L. S., Lund, E. & Dahlberg, J. E. Inhibition of Ran guanosine triphosphatase-dependent nuclear transport by the matrix protein of vesicular stomatitis virus. Science276, 1845–1848 (1997). ArticleCASPubMed Google Scholar
Enninga, J., Levy, D. E., Blobel, G. & Fontoura, B.M. A. Role of nucleoporin induction in releasing an mRNA nuclear export block. Science295, 1523–1525 (2002).References127–135show viral strategy for avoiding IFN response and cell strategy for survival. ArticleCASPubMed Google Scholar
Yalamanchili, P., Harris, K., Wimmer, E. & Dasgupta, A. Inhibition of basal transcription by poliovirus: a virus- encoded protease (3Cpro) inhibits formation of TBP–TATA box complex in vitro. J. Virol.70, 2922–2929 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA95, 7556–7561 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lee, C. K., Smith, E., Gimeno, R., Gertner, R. & Levy, D. E. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-γ. J. Immunol.164, 1286–1292 (2000). ArticleCASPubMed Google Scholar
Lee, C. K. et al. Distinct requirements for IFNs and STAT1 in NK cell function. J. Immunol.165, 3571–3577 (2000). ArticleCASPubMed Google Scholar
Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001). ArticleCASPubMed Google Scholar
Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene19, 2474–2488 (2000). ArticleCASPubMed Google Scholar
Song, J. I. & Grandis, J. R. STAT signaling in head and neck cancer. Oncogene19, 2489–2495 (2000). ArticleCASPubMed Google Scholar
Yoshikawa, H. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nature Genet.28, 29–35 (2001). CASPubMed Google Scholar
Zhang, Q. et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunity168, 466–474 (2002). ArticleCAS Google Scholar
Vignais, M. L., Sadowski, H. B., Watling, D., Rogers, N. C. & Gilman, M. Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol. Cell. Biol.16, 1759–1769 (1996). ArticleCASPubMedPubMed Central Google Scholar
Leaman, D. W. et al. Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol. Cell. Biol.16, 369–375 (1996). ArticleCASPubMedPubMed Central Google Scholar
Olayioye, M. A., Beuvink, I., Horsch, K., Daly, J. M. & Hynes, N. E. ErbB receptor-induced activation of Stat transcription factors is mediated by Src tyrosine kinases. J. Biol. Chem.274, 17209–17218 (1999). ArticleCASPubMed Google Scholar
Wang, Y. Z. et al. Activation of Stat3 preassembled with platelet-derived growth factor β receptors requires Src kinase activity. Oncogene19, 2075–2085 (2000). ArticleCASPubMed Google Scholar
Luchtefeld, M., Drexler, H. & Schieffer, B. Role of G β-subunit in angiotensin II-type 1 receptor signaling. Biochem. Biophys. Res. Commun.280, 756–760 (2001). ArticleCASPubMed Google Scholar
Madamanchi, N. R., Li, S., Patterson, C. & Runge, M. S. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK–STAT pathway. J. Biol. Chem.276, 18915–18924 (2001). ArticleCASPubMed Google Scholar
Park, E. S. et al. Involvement of JAK/STAT (Janus kinase/signal transducer and activator of transcription) in the thyrotropin signaling pathway. Mol. Endocrinol.14, 662–670 (2000). ArticleCASPubMed Google Scholar
Yu, C. L. et al. Enhanced DNA-binding of a Stat3-related protein in cells transformed by the Src oncoprotein. Science269, 81–83 (1995). ArticleCASPubMed Google Scholar
Cao, X., Tay, A., Guy, G. R. & Tan, Y. H. Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol. Cell. Biol.16, 1595–1603 (1996). ArticleCASPubMedPubMed Central Google Scholar
Marrero, M. B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature375, 247–250 (1995). ArticleCASPubMed Google Scholar
Nguyen, V. P. et al. Stat2 binding to the interferon-α receptor 2 subunit is not required for interferon-α signaling. J. Biol. Chem277, 9713–9721 (2002). ArticleCASPubMed Google Scholar
Ramana, C.V., Chatterjee-Kishore, M., Nguyen, H. & Stark, G. R. Complex roles of Stat1 in regulating gene expression. Oncogene19, 2619–2627 (2000). ArticleCASPubMed Google Scholar
Ramana, C. V., Gil, M. P., Schreiber, R. D. & Stark, G. R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling. Trends Immunol.23, 96–101 (2002). ArticleCASPubMed Google Scholar
Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell93, 827–839 (1998). ArticleCASPubMed Google Scholar