Receptor downregulation and multivesicular-body sorting (original) (raw)

References

  1. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).
    CAS Google Scholar
  2. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).
    CAS PubMed Google Scholar
  3. Palade, G. E. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1, 59–67 (1955).
    CAS PubMed PubMed Central Google Scholar
  4. Sotelo, J. R. & Porter, K. R. An electron microscope study of the rat ovum. J. Biophys. Biochem. Cytol. 5, 327–342 (1959).
    CAS PubMed PubMed Central Google Scholar
  5. Hirsch, J. G., Fedorko, M. E. & Cohn, Z. A. Vesicle fusion and formation at the surface of pinocytic vacuoles in macrophages. J. Cell Biol. 38, 629–632 (1968).
    CAS PubMed PubMed Central Google Scholar
  6. Gorden, P., Carpentier, J. L., Cohen, S. & Orci, L. Epidermal growth factor: morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts. Proc. Natl Acad. Sci. USA 75, 5025–5029 (1978).
    CAS PubMed PubMed Central Google Scholar
  7. Haigler, H. T., McKanna, J. A. & Cohen, S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J. Cell Biol. 81, 382–395 (1979).References 6 and 7 followed the delivery of internalized material from the plasma membrane through the MVB pathway to the lysosome, and thereby ascribed a function to the MVBs.
    CAS PubMed Google Scholar
  8. Miller, K., Beardmore, J., Kanety, H., Schlessinger, J. & Hopkins, C. R. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 102, 500–509 (1986).
    CAS PubMed Google Scholar
  9. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996). This paper showed that EGFRs are delivered to the lysosome through the MVB pathway.
    CAS PubMed Google Scholar
  10. Baass, P. C., Di Guglielmo, G. M., Authier, F., Posner, B. I. & Bergeron, J. J. M. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol. 5, 465–470 (1995).
    CAS PubMed Google Scholar
  11. Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994).
    CAS PubMed PubMed Central Google Scholar
  12. Grimes, M. L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964 (1996).
    CAS PubMed PubMed Central Google Scholar
  13. Sorkin, A., Eriksson, A., Heldin, C. H., Westermark, B. & Claesson-Welsh, L. Pool of ligand-bound platelet-derived growth factor β-receptors remain activated and tyrosine phosphorylated after internalization. J. Cell Physiol. 156, 373–382 (1993).
    CAS PubMed Google Scholar
  14. Wang, Z., Tung, P. S. & Moran, M. F. Association of p120 ras GAP with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell. Growth Differ. 7, 123–133 (1996).
    CAS PubMed Google Scholar
  15. Zhang, Y., Moheban, D. B., Conway, B. R., Bhattacharyya, A. & Segal, R. A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).
    CAS PubMed PubMed Central Google Scholar
  16. Ceresa, B. P. & Schmid, S. L. Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12, 204–210 (2000).
    CAS PubMed Google Scholar
  17. Di Fiore, P. P. & Gill, G. N. Endocytosis and mitogenic signaling. Curr. Opin. Cell Biol. 11, 483–488 (1999).
    CAS PubMed Google Scholar
  18. Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).
    CAS PubMed Google Scholar
  19. Aroian, R. V., Koga, M., Mendel, J. E., Ohshima, Y. & Sternberg, P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348, 693–699 (1990).
    CAS PubMed Google Scholar
  20. Kil, S. J. & Carlin, C. EGF receptor residues leu(679), leu(680) mediate selective sorting of ligand-receptor complexes in early endosomal compartments. J. Cell Physiol. 185, 47–60 (2000).
    CAS PubMed Google Scholar
  21. Felder, S. et al. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61, 623–634 (1990).
    CAS PubMed Google Scholar
  22. Sprague, G. F. & Thorner, J. W. in The Molecular and Cellular Biology of the Yeast Saccharomyces Vol. 2 (eds Jones, E. W., Pringle, J. R. & Broach, J. R.) 657–744 (Cold Spring Harbor Laboratory Press, Plainview, New York, 1992).
    Google Scholar
  23. Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).
    CAS PubMed Google Scholar
  24. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein- coupled receptor. Mol. Cell 1, 193–202 (1998).
    CAS PubMed Google Scholar
  25. Shih, S. C., Sloper-Mould, K. E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).
    CAS PubMed PubMed Central Google Scholar
  26. Dupre, S. & Haguenauer-Tsapis, R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol. Cell. Biol. 21, 4482–4494 (2001).
    CAS PubMed PubMed Central Google Scholar
  27. Losko, S., Kopp, F., Kranz, A. & Kolling, R. Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 mutant. Mol. Biol. Cell 12, 1047–1059 (2001).
    CAS PubMed PubMed Central Google Scholar
  28. Springael, J. Y. & Andre, B. Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1253–1263 (1998).
    CAS PubMed PubMed Central Google Scholar
  29. Helliwell, S. B., Losko, S. & Kaiser, C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).
    CAS PubMed PubMed Central Google Scholar
  30. Marchese, A. & Benovic, J. L. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J. Biol. Chem. 276, 45509–45512 (2001).
    CAS PubMed Google Scholar
  31. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999). This reference, together with references 32, 33 and 34, showed the ubiquitin ligase activity of Cbl, and indicated that failure to ubiquitylate EGFR contributes to the tumorigenicity seen in the presence of oncogenic forms of Cbl.
    CAS PubMed Google Scholar
  32. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).
    CAS PubMed Google Scholar
  33. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem. 274, 22151–22154 (1999).
    CAS PubMed Google Scholar
  34. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999).
    CAS PubMed Google Scholar
  35. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998). This paper showed a role for Cbl in the post-internalization sorting of EGFR.
    CAS PubMed PubMed Central Google Scholar
  36. Thien, C. B., Walker, F. & Langdon, W. Y. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol. Cell 7, 355–365 (2001).
    CAS PubMed Google Scholar
  37. Blake, T. J., Shapiro, M., Morse, H. C. & Langdon, W. Y. The sequences of the human and mouse c-cbl proto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6, 653–657 (1991).
    CAS PubMed Google Scholar
  38. Chen, L. & Davis, N. G. Ubiquitin-independent entry into the yeast recycling pathway. Traffic 3, 110–123 (2002).
    CAS PubMed Google Scholar
  39. Govers, R., ten Broeke, T., van Kerkhof, P., Schwartz, A. L. & Strous, G. J. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J. 18, 28–36 (1999).
    CAS PubMed PubMed Central Google Scholar
  40. van Delft, S., Govers, R., Strous, G. J., Verkleij, A. J. & van Bergen en Henegouwen, P. M. Epidermal growth factor induces ubiquitination of Eps15. J. Biol. Chem. 272, 14013–14016 (1997).
    CAS PubMed Google Scholar
  41. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002). This paper reported that the UIM not only binds ubiquitin, but also recruits ubiquitin ligase, which results in the mono-ubiquitination of UIM-containing proteins.
    CAS PubMed Google Scholar
  42. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).
    CAS PubMed Google Scholar
  43. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313 (2001).
    CAS PubMed Google Scholar
  44. Dunn, R. & Hicke, L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J. Biol. Chem. 276, 25974–25981 (2001).
    CAS PubMed Google Scholar
  45. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001). This paper, together with references 46 and 47, showed that ubiquitin is an endosomal sorting signal, and also identified ESCRT-I as the machinery that interacts with ubiquitylated MVB cargo.
    CAS PubMed Google Scholar
  46. Urbanowski, J. L. & Piper, R. C. Ubiquitin sorts proteins into the intralumenal degradative compartment of the late-endosome/vacuole. Traffic 2, 622–630 (2001).
    CAS PubMed Google Scholar
  47. Reggiori, F. & Pelham, H. R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 20, 5176–5186 (2001).
    CAS PubMed PubMed Central Google Scholar
  48. Reggiori, F. & Pelham, H. R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biol. 4, 117–123 (2002).
    CAS PubMed Google Scholar
  49. Swaminathan, S., Amerik, A. Y. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell 10, 2583–2594 (1999).
    CAS PubMed PubMed Central Google Scholar
  50. Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000). This study identified a role for Doa4 in the de-ubiquitylation of MVB cargoes.
    CAS PubMed PubMed Central Google Scholar
  51. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).
    CAS PubMed Google Scholar
  52. Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996).
    CAS PubMed Google Scholar
  53. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).
    CAS PubMed Google Scholar
  54. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).
    CAS PubMed Google Scholar
  55. Koonin, E. V. & Abagyan, R. A. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nature Genet. 16, 330–331 (1997).
    CAS PubMed Google Scholar
  56. Ponting, C. P., Cai, Y. D. & Bork, P. The breast cancer gene product TSG101: a regulator of ubiquitination? J. Mol. Med. 75, 467–469 (1997).
    CAS PubMed Google Scholar
  57. Conibear, E. & Stevens, T. H. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404, 211–230 (1998).
    CAS PubMed Google Scholar
  58. Rieder, S. E., Banta, L. M., Köhrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7, 985–999 (1996).
    CAS PubMed PubMed Central Google Scholar
  59. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).
    CAS PubMed Google Scholar
  60. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). This paper showed that the class E Vps proteins have a role in HIV–1 budding.
    CAS PubMed Google Scholar
  61. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).
    CAS PubMed PubMed Central Google Scholar
  62. Li, Y., Kane, T., Tipper, C., Spatrick, P. & Jenness, D. D. Yeast mutants affecting possible quality control of plasma membrane proteins. Mol. Cell. Biol. 19, 3588–3599 (1999).
    CAS PubMed PubMed Central Google Scholar
  63. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell 11, 227–239 (2000).
    CAS PubMed PubMed Central Google Scholar
  64. Li, L. & Cohen, S. N. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319–329 (1996).
    CAS PubMed Google Scholar
  65. Shih, S. C. et al. Epsins and Vps27/Hrs contain ubiquitin-binding domains that function in receptor endocytosis and downregulation. Nature Cell Biol. 4, 389–393 (2002).
    CAS PubMed Google Scholar
  66. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).
    CAS PubMed Google Scholar
  67. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).
    CAS PubMed PubMed Central Google Scholar
  68. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).
    CAS PubMed PubMed Central Google Scholar
  69. Nielsen, M. S. et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20, 2180–2190 (2001).
    CAS PubMed PubMed Central Google Scholar
  70. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).
    CAS PubMed Google Scholar
  71. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).
    CAS PubMed Google Scholar
  72. Shiba, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941 (2002).
    CAS PubMed Google Scholar
  73. Babst, M., Katzman, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, directs recruitment of machinery required for protein sorting into multivesicular bodies. Dev. Cell 3, 283–289 (2002).
    CAS PubMed Google Scholar
  74. Davis, N. G., Horecka, J. L. & Sprague, G. F. Jr _Cis_- and _trans_-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122, 53–65 (1993).
    CAS PubMed Google Scholar
  75. Nothwehr, S. F., Bryant, N. J. & Stevens, T. H. The newly identified yeast GRD genes are required for retention of late-Golgi membrane proteins. Mol. Cell. Biol. 16, 2700–2707 (1996).
    CAS PubMed PubMed Central Google Scholar
  76. Babst, M., Katzman, D. J., Estepa, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome associated hetero-oligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002). References 73 and 76 further characterize the ESCRT complexes.
    CAS PubMed Google Scholar
  77. Ashrafi, K., Farazi, T. A. & Gordon, J. I. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J. Biol. Chem. 273, 25864–25874 (1998).
    CAS PubMed Google Scholar
  78. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998). This work showed that Vps4 encodes an AAA-ATPase that is required for the release of MVB sorting components.
    CAS PubMed PubMed Central Google Scholar
  79. Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997).
    CAS PubMed PubMed Central Google Scholar
  80. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).
    CAS PubMed Google Scholar
  81. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).
    CAS PubMed Google Scholar
  82. Odorizzi, G., Babst, M. & Emr, S. D. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25, 229–235 (2000).
    CAS PubMed Google Scholar
  83. Sato, T. K., Overduin, M. & Emr, S. D. Location, location, location: membrane targeting directed by PX domains. Science 294, 1881–1885 (2001).
    CAS PubMed Google Scholar
  84. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791 (1998).
    CAS PubMed Google Scholar
  85. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).
    CAS PubMed PubMed Central Google Scholar
  86. Wurmser, A. E. & Emr, S. D. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 17, 4930–4942 (1998).
    CAS PubMed PubMed Central Google Scholar
  87. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993). References 85, 86 and 87 showed a role for PtdIns(3)P in MVB formation and that PtdIns(3)P is present on lumenal vesicles.
    CAS PubMed Google Scholar
  88. Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).
    CAS PubMed Google Scholar
  89. Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).
    CAS PubMed PubMed Central Google Scholar
  90. Gary, J. D., Wurmser, A. E., Bonangelino, C. J., Weisman, L. S. & Emr, S. D. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. Cell Biol. 143, 65–79 (1998).
    CAS PubMed PubMed Central Google Scholar
  91. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).
    CAS PubMed Google Scholar
  92. Berset, T., Hoier, E. F., Battu, G., Canevascini, S. & Hajnal, A. Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291, 1055–1058 (2001).
    CAS PubMed Google Scholar
  93. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).
    CAS PubMed Google Scholar
  94. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).
    CAS PubMed Google Scholar
  95. Deblandre, G. A., Lai, E. C. & Kintner, C. Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev. Cell 1, 795–806 (2001).
    CAS PubMed Google Scholar
  96. Lai, E. C., Deblandre, G. A., Kintner, C. & Rubin, G. M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev. Cell 1, 783–794 (2001).
    CAS PubMed Google Scholar
  97. Pavlopoulos, E. et al. neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev. Cell 1, 807–816 (2001). References 95, 96 and 97 showed a role for ubiquitin ligase in developmental signalling.
    CAS PubMed Google Scholar
  98. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–64 (2001).
    CAS PubMed PubMed Central Google Scholar
  99. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).
    CAS PubMed Google Scholar
  100. Ott, D. E., Coren, L. V., Chertova, E. N., Gagliardi, T. D. & Schubert, U. Ubiquitination of HIV-1 and MuLV Gag. Virology 278, 111–121 (2000).
    CAS PubMed Google Scholar
  101. Schubert, U. et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl Acad. Sci. USA 97, 13057–13062 (2000).
    CAS PubMed PubMed Central Google Scholar
  102. Strack, B., Calistri, A., Accola, M. A., Palu, G. & Gottlinger, H. G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl Acad. Sci. USA 97, 13063–13068 (2000). Papers 100, 101 and 102 highlighted a role for ubiquitin in retroviral budding.
    CAS PubMed PubMed Central Google Scholar
  103. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001).
    CAS PubMed Google Scholar
  104. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).
    CAS PubMed Google Scholar
  105. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19–57 (1998).
    CAS PubMed PubMed Central Google Scholar
  106. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002).
    CAS Google Scholar
  107. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).
    CAS PubMed Google Scholar
  108. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).
    CAS PubMed PubMed Central Google Scholar
  109. Cowles, C. R., Snyder, W. B., Burd, C. G. & Emr, S. D. An alternative Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J. 16, 2769–2782 (1997).
    CAS PubMed PubMed Central Google Scholar
  110. Galan, J. M., Moreau, V., Andre, B., Volland, C. & Haguenauer-Tsapis, R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952 (1996).
    CAS PubMed Google Scholar
  111. Egner, R. & Kuchler, K. The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Lett. 378, 177–181 (1996).
    CAS PubMed Google Scholar
  112. Kolling, R. & Hollenberg, C. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13, 3261–3271 (1994).
    CAS PubMed PubMed Central Google Scholar
  113. Beck, T., Schmidt, A. & Hall, M. N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J. Cell Biol. 146, 1227–1238 (1999).
    CAS PubMed PubMed Central Google Scholar
  114. Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A. & Schwartz, A. L. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 15, 3806–3812 (1996).
    CAS PubMed PubMed Central Google Scholar
  115. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell 12, 1293–1301 (2001).
    CAS PubMed PubMed Central Google Scholar
  116. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).
    CAS PubMed Google Scholar
  117. Staub, O. et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 16, 6325–6336 (1997).
    CAS PubMed PubMed Central Google Scholar
  118. Gottschalk, S., Waheed, A., Schmidt, B., Laidler, P. & von Figura, K. Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J. 8, 3215–3219 (1989).
    CAS PubMed PubMed Central Google Scholar

Download references