uPAR: a versatile signalling orchestrator (original) (raw)
Collen, D. The plasminogen (fibrinolytic) system. Thromb. Haemost.82, 259–270 (1999). CASPubMed Google Scholar
Appella, E. et al. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J. Biol. Chem.262, 4437–4440 (1987). CASPubMed Google Scholar
Ploug, M. & Ellis, V. Structure–function relationship in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom a-neurotoxins. FEBS Lett.349, 163–168 (1994). CASPubMed Google Scholar
Behrendt, N., Roenne, E. & Danoe, K. Domain interplay in the urokinase receptor-requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains. J. Biol. Chem.271, 22885–22894 (1996). CASPubMed Google Scholar
Ploug, M. Identification of specific sites involved in ligand binding by photoaffinity labeling of the receptor for the urokinase-type plasminogen activator. Residues located at equivalent positions in uPAR domains I and III participate in the assembly of a composite ligand-binding site. Biochemistry37, 16494–16505 (1998). CASPubMed Google Scholar
Waltz, D. A. & Chapman, H. A. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J. Biol. Chem.269, 14746–14750 (1994). CASPubMed Google Scholar
Loskutoff, D. J., Curriden, S. A., Hu, G. & Deng, G. Regulation of cell adhesion by PAI-1. Apmis.107, 54–61 (1999). CASPubMed Google Scholar
Nykjær, A. et al. Purified a2-macroglobulin receptor/LDL receptor-related protein binds urokinase-plasminogen activcator inhibitor type-1 complex. Evidence that the a2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem.267, 14543–14546 (1992). PubMed Google Scholar
Czekay, R. P., Kuemmel, T. A., Orlando, R. A. & Farquhar, M. G. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol. Biol. Cell12, 1467–1479 (2001). CASPubMedPubMed Central Google Scholar
Nykjær, A. et al. Recycling of the urokinase receptor during internalization of the uPA–serpin complexes. EMBO J.16, 2610–2620 (1997). PubMedPubMed Central Google Scholar
Sidenius, N., Andolfo, A., Fesce, R. & Blasi, F. Urokinase regulates vitronectin binding in vitro and in vivo by controlling urokinase receptor oligomerization. J. Biol. Chem.277, 27982–27990 (2002). CASPubMed Google Scholar
Resnati, M. et al. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J.15, 1572–1582 (1996). CASPubMedPubMed Central Google Scholar
Wei, Y. et al. Regulation of integrin function by the urokinase receptor. Science273, 1551–1555 (1996). This paper discusses a molecular basis for the mechanism by which uPAR can regulate signalling, by showing a direct interaction between uPAR and integrins. CASPubMed Google Scholar
Yebra, M. et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin αvβ5-directed cell migration. J. Biol. Chem.271, 29393–29399 (1996). CASPubMed Google Scholar
Degryse, B., Orlando, S., Resnati, M., Rabbani, S. A. & Blasi, F. Urokinase/urokinase receptor and vitronectin/avb3 integrin induce chemotaxis and cytoskeleton reorganization through different signaling pathways. Oncogene20, 2032–2043 (2001). CASPubMed Google Scholar
May, A. E. et al. Urokinase receptor (CD87) regulates leukocyte recruitment via β2 integrins in vivo. J. Exp. Med.188, 1029–1037 (1998). This paper reports a role of uPAR as a signalling receptor in leukocyte recruitment. CASPubMedPubMed Central Google Scholar
Waltz, D. A. et al. Nonproteolytic role for the urokinase receptor in cellular migration in vivo. Am. J. Respir. Cell. Mol. Biol.22, 316–322 (2000). CASPubMed Google Scholar
Bohuslav, J. et al. Urokinase plasminogen activator receptor, β2-integrins, and Src-kinases within a single receptor complex of human monocytes. J. Exp. Med.181, 1381–1390 (1995). CASPubMed Google Scholar
Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol.147, 89–104 (1999). CASPubMed Google Scholar
Carriero, M. V. et al. Urokinase receptor interacts with α(v)β5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res.59, 5307–5314 (1999). CASPubMed Google Scholar
Tarui, T., Mazar, A. P., Cines, D. B. & Takada, Y. Urokinase receptor (uPAR/CD87) is a ligand for integrin and mediates cell–cell interaction. J. Biol. Chem.276, 3983–3990 (2000). PubMed Google Scholar
Simon, D. I. et al. Identification of a urokinase receptor–integrin interaction site. Promiscuous regulator of integrin function. J. Biol. Chem.275, 10228–10234 (2000). CASPubMed Google Scholar
Wei, Y., Eble, J. A., Wang, Z., Kreidberg, J. A. & Chapman, H. A. Urokinase receptor promotes b1 integrin function through interactions with integrin a3b1. Mol. Biol. Cell12, 2975–2986 (2001). CASPubMedPubMed Central Google Scholar
Liu, D., Aguirre-Ghiso, J. A., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell1, 445–457 (2002). CASPubMed Google Scholar
Montuori, N., Carriero, M. V., Salzano, S., Rossi, G. & Ragno, P. The cleavage of the urokinase receptor regulates its multiple functions. J. Biol. Chem. 2002 Sep 23 (DOI: 10.1074/jbc.M207494200).
Fazioli, F. et al. The urokinase-sensitive region of the urokinase receptor is responsible for its potent chemotactic activity. EMBO J16, 7279–7286 (1997). This paper identifies the chemotactic epitope of uPAR. CASPubMedPubMed Central Google Scholar
Degryse, B. et al. Src-dependence and pertussis-toxin sensitivity of urokinase receptor-dependent chemotaxis, and cytoskeleton reorganization in rat smooth muscle cells via the urokinase receptor. Blood94, 649–662 (1999). CASPubMed Google Scholar
Nguyen, D. H. et al. Urokinase-type plasminogen activator stimulates the Ras/extracellular signal-regulated kinase (ERK) signaling pathway and MCF-7 cell migration by a mechanism that requires focal adhesion kinase, Src, and Shc. Rapid dissociation of GRB2/Sps–Shc complex is associated with the transient phosphorylation of ERK in urokinase-treated cells. J. Biol. Chem.275, 19382–19388 (2000). CASPubMed Google Scholar
Resnati, M. et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc. Natl Acad. Sci. USA99, 1359–1364 (2002). This study reports the interaction of uPAR with GPCR. CASPubMedPubMed Central Google Scholar
Le, Y. et al. A new insight in the role of 'old' chemotactic peptide receptor FPR and FPRL1: down-regulation opf chemokine receptors CCR5 and CXCR4. Forum94, 299–311 (1999). Google Scholar
Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol.1, 31–39 (2000). CAS Google Scholar
Wei, Y., Yang, X., Liu, Q., Wilkins, J. A. & Chapman, H. A. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol.144, 1285–1294 (1999). CASPubMedPubMed Central Google Scholar
Gomez-Mouton, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA98, 9642–9647 (2001). This paper shows the existence of two types of glycophospholipid raft (containing GM1 or GM3), and the segregation of uPAR with chemokine receptors in GM3 rafts that are present specifically at the leading edge of a migrating lymphocyte. CASPubMedPubMed Central Google Scholar
Koshelnick, Y., Ehart, M., Hufnagl, P., Heinrich, P. C. & Binder, B. R. Urokinase receptor is associated with the components of the JAK:STAT1 signaling pathway and leads to the activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J. Biol. Chem.272, 28563–28567 (1997). CASPubMed Google Scholar
Weaver, A. M., Hussaini, I. M., Mazar, A., Henkin, J. & Gonias, S. L. Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptor-related protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin. J. Biol. Chem.272, 14372–14379 (1997). CASPubMed Google Scholar
Webb, D. J., Nguyen, D. H., Sankovic, M. & Gonias, S. L. The very low density lipoprotein receptor regulates urokinase receptor catabolism and breast cancer cell motility in vitro. J. Biol. Chem.274, 7412–7420 (1999). CASPubMed Google Scholar
Degryse, B., Sier, C. F. M., Resnati, M., Conese, M. & Blasi, F. PAI-1 inhibits urokinase-induced chemotaxis by internalizing the urokinase receptor. FEBS Lett.505, 249–254 (2001). CASPubMed Google Scholar
Nykjaer, A. et al. Mannose-6-phosphate/insulin like growth factor II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J. Cell Biol.141, 815–828 (1998). CASPubMedPubMed Central Google Scholar
Behrendt, N. et al. A urokinase receptor-associated protein with specific collagen binding properties. J. Biol. Chem.275, 1993–2002 (2000). CASPubMed Google Scholar
Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK (MAPK) to p38 (MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell12, 863–879 (2001). This paper identifies the integrin as the target of uPAR in uPAR-dependent cell proliferation, and the requirement of this interaction for cell growth. CASPubMedPubMed Central Google Scholar
Webb, D. J., Nguyen, D. H. & Gonias, S. L. Extracellular signal-regulated kinase functions in the urokinase receptor-dependent pathway by which neutralization of low density lipoprotein receptor-related protein promotes fibrosarcoma cell migration and Matrigel invasion. J. Cell Sci.113, 123–134 (2000). CASPubMed Google Scholar
Kjoeller, L. & Hall, A. Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J. Cell Biol.152, 1145–1157 (2001). Google Scholar
Nguyen, D. H. et al. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J. Cell Biol.146, 149–164 (1999). CASPubMedPubMed Central Google Scholar
Busso, N., Masur, S. K., Lazega, D., Waxman, S. & Ossowski, L. Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J. Cell Biol.126, 259–270 (1994). CASPubMed Google Scholar
Myohanen, H. T. et al. Distribution and lateral mobility of the urokinase-receptor complex at the cell surface. J. Histochem. Cytochem.41, 1291–1301 (1993). CASPubMed Google Scholar
Sitrin, R. G., Pan, P. M., Harper, H. A., Blackwood, R. A. & Todd, R. F. Urokinase receptor (CD87) aggregation triggers phosphoinositide hydrolysis and intracellular calcium mobilization in mononuclear phagocytes. J. Immunol.163, 6193–6200 (1999). CASPubMed Google Scholar
Sitrin, R. G., Pan, P. M., Blackwood, R. A., Huang, J. & Petty, H. R. Evidence for a signaling partnership between urokinase receptors (cd87) and l-selectin (cd621) in human polymorphonuclear neutrophils. J. Immunol.166, 4822–4825 (2001). CASPubMed Google Scholar
Le, Y. et al. Amyloid (β)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci.21, RC123 (2001). CASPubMedPubMed Central Google Scholar
Dumler, I. et al. The JAK/STAT pathway and urokinase receptor signaling in human aortin vascular smooth muscle cells. J. Biol. Chem.273, 315–321 (1998). CASPubMed Google Scholar
Wang, N., Planus, E., Pouchelet, M., Fredberg, J. J. & Barlovatz-Meimon, G. Urokinase receptor mediates mechanical force transfer across the cell surface. Am. J. Physiol.268, C1062–C1066 (1995). CASPubMed Google Scholar
Kusch, A. et al. Urokinase stimulates human vascular smooth muscle cells migration via a phosphatidylinositol 3-kinase-tyk2 interaction. J. Biol. Chem.275, 39466–39473 (2000). CASPubMed Google Scholar
Sidenius, N. & Blasi, F. Domain 1 of the urokinase receptor (uPAR) is required for uPAR-mediated cell binding to vitronectin. FEBS Lett.470, 40–46 (2000). CASPubMed Google Scholar
Stepanova, V. et al. Urokinase-dependent human vascular smooth muscle cells adhesion requires selective vitronectin phorphorylation by ecto-protein kinase CK2. J. Biol. Chem.277, 10265–10272 (2002). CASPubMed Google Scholar
Simon, D. I. et al. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood88, 3185–3194 (1996). CASPubMed Google Scholar
Nusrat, A. R. & Chapman, H. A. An autocrine role for urokinase in phorbol ester-mediated differentiation of myeloid cell lines. J. Clin. Invest.87, 1091–1097 (1991). CASPubMedPubMed Central Google Scholar
Ferias-Eisner, R. et al. Thye urokinase plasminogen activator receptor (uPAR) is preferentially induced by nerve growth factors in PC12 pheomocromocytoma cells and is required for NGF-driven differentiation. J. Neurosci.20, 230–239 (2000). Google Scholar
Rabbani, S. A. et al. Structural requirements for the growth factor activity of the amino-terminal domain of urokinase. J. Biol. Chem.267, 14151–14156 (1992). CASPubMed Google Scholar
Kirchheimer, J. C., Wojta, J., Christ, G., Hienert, G. & Binder, B. R. Proliferation of a human epidermal tumor cell line stimulated by urokinase. FASEB J.1, 125–128 (1987). CASPubMed Google Scholar
Yu, W., Kim, J. & Ossowski, L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J. Cell Biol.137, 767–777 (1997). CASPubMedPubMed Central Google Scholar
Carmeliet, P. et al. Receptor-independent role of urokinase-type plasminogen activator in pericellular plasmin and matrix metalloproteinase proteolysis during vascular wound healing in mice. J. Cell Biol.140, 233–245 (1998). This paper provides a possible explanation for the redundant role of uPAR as protease receptor, in part because uPA binds other ECM components. CASPubMedPubMed Central Google Scholar
Chiaradonna, F. et al. Urokinase receptor-dependent and -independent p56/59hck activation state is a molecular switch between myelomonocytic cell motility and adherence. EMBO J.11, 3013–3023 (1999). Google Scholar
Kook, Y. H., Adamski, J., Zelent, A. & Ossowski, L. The effect of antisense inhibition of urokinase receptor in human squamous cell carcinoma on malignancy. EMBO J.13, 3983–3991 (1994). CASPubMedPubMed Central Google Scholar
Luttun, A., Dewerchin, M., Collen, D. & Carmeliet, P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr. Atheroscler. Rep.2, 407–416 (2000). CASPubMed Google Scholar
Degen, J. L. Genetic interactions between the coagulation and fibrinolytic systems. Thromb. Haemost.86, 130–137 (2001). CASPubMed Google Scholar
Eitzman, D. T. & Ginsburg, D. Of mice and men. The function of plasminogen activator inhibitors (PAIs) in vivo. Adv. Exp. Med. Biol.425, 131–141 (1997). CASPubMed Google Scholar
Carmeliet, P. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature369, 419–424 (1994). The first study of a proteinase knockout in mice, reporting the crucial role of tPA and uPA in normal health.| PubMed | Google Scholar
Bugge, T. H. et al. The receptor for urokinase-type plasminogen activator is not essential for mouse development or fertility. J. Biol. Chem.270, 16886–16894 (1995). This paper reports the normal phenotype of uPAR-deficient mice. CASPubMed Google Scholar
Dewerchin, M. et al. Generation and characterization of urokinase receptor-deficient mice. J. Clin. Invest.97, 870–878 (1996). This paper reports the normal phenotype of uPAR-deficient mice. CASPubMedPubMed Central Google Scholar
Ploplis, V. A. et al. Effects of disruption of the plasminogen gene on thrombosis, growth and health in mice. Circulation92, 2585–2593 (1995). CASPubMed Google Scholar
Bugge, T. H., Flick, M. J., Daugherty, C. C. & Degen, J. L. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev.9, 794–807 (1995). CASPubMed Google Scholar
Bugge, T. H. et al. Loss of fibrinogen rescues mice from pleiotropic effects of plasminogen deficiency. Cell87, 709–719 (1996). CASPubMed Google Scholar
Bugge, T. H. et al. Urokinase-type plasminogen activator is effective in fibrin clearance in the absence of its receptor or tissue-type plasminogen activator. Proc. Natl Acad. Sci. USA93, 5899–5904 (1996). This study reports that uPAR is redundant as a protease receptor in fibrin surveillance. CASPubMedPubMed Central Google Scholar
Carmeliet, P. & Collen, D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb. Res.91, 255–285 (1998). CASPubMed Google Scholar
Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genet.17, 439–444 (1997). This paper reports that matrix metalloproteinases are activated by uPA-generated plasminin vivo. CASPubMed Google Scholar
Moons, L. et al. Reduced transplant arteriosclerosis in plasminogen-deficient mice. J. Clin. Invest.102, 1788–1797 (1998). CASPubMedPubMed Central Google Scholar
Carmeliet, P. et al. Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ. Res.81, 829–839 (1997). CASPubMed Google Scholar
Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med.5, 1135–1142 (1999). This paper reports that loss of uPA, but not uPAR, prevents destruction of the ischaemic myocardium, thereby showing a redundant role of uPAR as a proteinase receptor. CASPubMed Google Scholar
Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J.18, 4645–4656 (1999). CASPubMedPubMed Central Google Scholar
Romer, J. et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nature Med.2, 287–292 (1996). CASPubMed Google Scholar
Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature Med.4, 923–928 (1998). CASPubMed Google Scholar
Bajou, K. et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J. Cell Biol.152, 777–784 (2001). This paper reports a redundant role of host uPAR in tumour vascularization. CASPubMedPubMed Central Google Scholar
Carmeliet, P., Moons, L., Ploplis, V., Plow, E. & Collen, D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J. Clin. Invest.99, 200–208 (1997). CASPubMedPubMed Central Google Scholar
Levi, M. et al. Deficiency of urokinase-type plasminogen activator-mediated plasmin generation impairs vascular remodeling during hypoxia-induced pulmonary hypertension in mice. Circulation103, 2014–2020 (2001). CASPubMed Google Scholar
Soriano, S. G. et al. Mice deficient in Mac-1 (CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury. Stroke30, 134–139 (1999). CASPubMed Google Scholar
Gyetko, M. R. et al. Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J. Immunol.165, 1513–1519 (2000). This paper reports a role of uPAR as a signalling receptor in neutrophil recruitment. CASPubMed Google Scholar
Metzler, B. et al. Mouse model of myocardial remodelling after ischemia: role of intercellular adhesion molecule-1. Cardiovasc. Res.49, 399–407 (2001). CASPubMed Google Scholar
Bunting, M., Harris, E. S., McIntyre, T. M., Prescott, S. M. & Zimmerman, G. A. Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving β2 integrins and selectin ligands. Curr. Opin. Hematol.9, 30–35 (2002). PubMed Google Scholar
Gyetko, M. R. et al. Antigen-driven lymphocyte recruitment to the lung is diminished in the absence of urokinase-type plasminogen activator (uPA) receptor, but is independent of uPA. J. Immunol.167, 5539–5542 (2001). CASPubMed Google Scholar
Gyetko, M. R., Todd, R. F., Wilkinson, C. C. & Sitrin, R. G. The urokinase receptor is required for human monocyte chemotaxis in vitro. J. Clin. Invest.93, 1380–1387 (1994). CASPubMedPubMed Central Google Scholar
Rijneveld, A. W. et al. Urokinase receptor is necessary for adequate host defense against pneumococcal pneumonia. J. Immunol.168, 3507–3511 (2002). CASPubMed Google Scholar
Gyetko, M. et al. Urokinase is required for the pulmonary inflammatory response to Cryptococcus neoformans. A murine transgenic model. J. Clin. Invest.97, 1818–1826 (1996). CASPubMedPubMed Central Google Scholar
Jones, S. P. et al. Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. Am. J. Physiol. Heart Circ. Physiol.279, 196–201 (2000). Google Scholar
Alfano, M., Sidenius, N., Panzeri, B., Blasi, F. & Poli, G. Urokinase–urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication. Proc. Natl Acad. Sci. USA99, 8862–8867 (2002). CASPubMedPubMed Central Google Scholar
Speth, C., Pichler, I., Stockl, G., Mair, M. & Dierich, M. P. Urokinase plasminogen activator receptor (uPAR; CD87) expression on monocytic cells and T cells is modulated by HIV-1 infection. Immunobiology199, 152–162 (1998). CASPubMed Google Scholar
Coleman, J. L., Gebbia J. A. & Benach J. L. Borrelia burgdorferi and other bacterial products induce expression and release of the urokinase receptor. J. Immunol.166, 473–480 (2001). CASPubMed Google Scholar
Sidenius, N. et al. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood96, 4091–4095 (2000). CASPubMed Google Scholar
Florquin, S. et al. Release of urokinase plasminogen activator receptor during urosepsis and endotoxemia. Kidney Int.59, 2054–2061 (2001). CASPubMed Google Scholar
Xue, W., Hashimoto, K. & Toi, Y. Functional involvement of urokinase-type plasminogen activator receptor in pemphigus acantholysis. J. Cutan Pathol.25, 469–474 (1998). CASPubMed Google Scholar
Del Rosso, M., Fibbi, G. & Matucci Cerinic, M. The urokinase-type plasminogen activator system and inflammatory joint diseases. Clin. Exp. Rheumatol.17, 485–498 (1999). CASPubMed Google Scholar
Walker, D. G., Lue, L. F. & Beach, T. G. Increased expression of the urokinase plasminogen-activator receptor in amyloid β peptide-treated human brain microglia and in AD brains. Brain Res.926, 69–79 (2002). CASPubMed Google Scholar
Okada, S. S. et al. Native atherosclerosis and vein graft arterialization: association with increased urokinase receptor expression in vitro and in viv. Thromb. Haemost.80, 140–147 (1998). CASPubMed Google Scholar
Solberg, H., Ploug, M., Hoyer-Hansen, G., Nielsen, B. S. & Lund, L. R. The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling. J. Histochem. Cytochem.49, 237–246 (2001). CASPubMed Google Scholar
Bisgaard, H. C., Santoni-Rugiu, E., Nagy, P. & Thorgeirsson, S. S. Modulation of the plasminogen activator/plasmin system in rat liver regenerating by recruitment of oval cells. Lab. Invest.78, 237–246 (1998). CASPubMed Google Scholar
Stephens, R. W. et al. Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J. Natl Cancer Inst.91, 869–874 (1999). This paper shows that, in colon carcinoma patients, high serum levels of uPAR predict poor survival. CASPubMed Google Scholar
Crowley, C. W. et al. Prevention of metastasis by inhibition of the urokinase receptor. Proc. Natl Acad. Sci. USA90, 5021–5025 (1993). In a human xenografted tumour model, co-expression of inhibitors of the uPA–uPAR interaction block metastasis. CASPubMedPubMed Central Google Scholar
Min, H. Y. et al. Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res.56, 2428–2433 (1996). Interference with the uPA—uPAR interaction blocks tumour angiogenesis and growth. CASPubMed Google Scholar
Stoppelli, M. P. et al. Autocrine saturation of pro-urokinase receptor on human A431 cells. Cell45, 675–684 (1986). CASPubMed Google Scholar
Pyke, C. et al. Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinoma. Am. J. Pathol.138, 1059–1067 (1991). CASPubMedPubMed Central Google Scholar
Brunner, N. et al. The urokinase plasminogen activator receptor in blood from healthy individuals and patients with cancer. Apmis.107, 160–167 (1999). CASPubMed Google Scholar
Lakka, S. S. et al. Adenovirus-mediated antisense urokinase-type plasminogen activator receptor gene transfer reduces tumor cell invasion and metastasis in non-small cell lung cancer cell lines. Clin. Cancer Res.7, 1087–1093 (2001). CASPubMed Google Scholar
Ploug, M. et al. Peptide-derived antagonists of the urokinase receptor. Affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry40, 12157–12168 (2001). CASPubMed Google Scholar
Pepper, M. S. Role of the matrix metalloproteinase and plasminogen activator–plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol.21, 1104–1117 (2001). CASPubMed Google Scholar
Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature407, 249–257 (2000). CASPubMed Google Scholar
Jain, R. K. & Carmeliet, P. F. Vessels of death or life. Sci. Am.285, 38–45 (2001). CASPubMed Google Scholar
Thewes, M., Elsner, E., Wessner, D., Engst, R. & Ring, J. The urokinase plasminogen activator system in angiosarcoma, Kaposi's sarcoma, granuloma pyogenicum, and angioma: an immunohistochemical study. Int. J. Dermatol.39, 188–191 (2000). CASPubMed Google Scholar
Fibbi, G. et al. Urokinase-dependent angiogenesis in vitro and diacylglycerol production are blocked by antisense oligonucleotides against the urokinase receptor. Lab. Invest.78, 1109–1119 (1998). CASPubMed Google Scholar
Li, H. et al. Adenovirus mediated delivery of a uPA/uPAR antagonist suppresses angiogenesis-dependent tumor growth and dissemination in mice. Gene Ther.5, 1105–1113 (1998). CASPubMed Google Scholar
Harbeck, N. et al. Clinical relevance of the plasminogen activator inhibitor type 1 — a multifaceted proteolytic factor. Onkologie24, 238–244 (2001). CASPubMed Google Scholar
Lambert, V. et al. Influence of plasminogen activator inhibitor type-1 on choroidal neovascularization. FASEB J.15, 1021–1027 (2001). CASPubMed Google Scholar
Gutierrez, L. S. et al. Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res.60, 5839–5847 (2000). CASPubMed Google Scholar
McMahon, G. A. et al. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem.276, 33964–33968 (2001). CASPubMed Google Scholar
Stefansson, S. et al. Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J. Biol. Chem.276, 8135–8141 (2001). CASPubMed Google Scholar
Devy, L. et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J.16, 147–154 (2002). CASPubMed Google Scholar
Ossowski, L. & Aguirre Ghiso, J. A. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr. Opin. Cell Biol.12, 613–620 (2000). A thoughtful survey of the signalling pathways that are activated by uPAR. CASPubMed Google Scholar
Carmeliet, P. & Collen, D. Transgenic mouse models in angiogenesis and cardiovascular disease, J Pathol.190, 387–405 (2000). CASPubMed Google Scholar