Donachie, W. D. Co-ordinate regulation of the Escherichia coli cell cycle or the cloud of unknowing. Mol. Microbiol.40, 779–785 (2001). ArticleCASPubMed Google Scholar
Harry, E. J. Bacterial cell division: regulating Z-ring formation. Mol. Microbiol.40, 795–803 (2001). ArticleCASPubMed Google Scholar
Margolin, W. Spatial regulation of cytokinesis in bacteria. Curr. Opin. Microbiol.4, 647–652 (2001). ArticleCASPubMed Google Scholar
Jensen, R. B., Wang, S. C. & Shapiro, L. Dynamic localization of proteins and DNA during a bacterial cell cycle. Nature Rev. Mol. Cell Biol.3, 167–176 (2002). ArticleCAS Google Scholar
Ryan, K. R. & Shapiro, L. Temporal and spatial regulation in prokaryotic cell cycle progression and development. Annu. Rev. Biochem.72, 367–394 (2003). ArticleCASPubMed Google Scholar
Skerker, J. M. & Laub, M. T. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nature Rev. Microbiol.2, 325–337 (2004). ArticleCAS Google Scholar
Stephens, C. Prokaryotic development: a new player on the cell cycle circuit. Curr. Biol.14, R505–R507 (2004). ArticleCASPubMed Google Scholar
Wu, L. J. Structure and segregation of the bacterial nucleoid. Curr. Opin. Genet. Dev.14, 126–132 (2004). ArticleCASPubMed Google Scholar
Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA101, 9257–9262 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell117, 915–925 (2004). ArticleCASPubMed Google Scholar
Gerdes, K., Moller-Jensen, J., Ebersbach, G., Kruse, T. & Nordstrom, K. Bacterial mitotic machineries. Cell116, 359–366 (2004). ArticleCASPubMed Google Scholar
Lowe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature391, 203–206 (1998). ArticleCASPubMed Google Scholar
Wang, X. & Lutkenhaus, J. The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. Mol. Microbiol.9, 435–442 (1993). ArticleCASPubMed Google Scholar
Iyer, L. M., Makarova, K. S., Koonin, E. V. & Aravind, L. Comparative genomics of the FtsK–HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res.32, 5260–5279 (2004). ArticleCASPubMedPubMed Central Google Scholar
Romberg, L. & Levin, P. A. Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu. Rev. Microbiol.57, 125–154 (2003). ArticleCASPubMedPubMed Central Google Scholar
Margolin, W. Catching some Zs: a new protein for spatial regulation of bacterial cytokinesis. Cell117, 850–851 (2004). ArticleCASPubMed Google Scholar
Crowley, D. J. & Courcelle, J. Answering the call: coping with DNA damage at the most inopportune time. J. Biomed. Biotechnol.2, 66–74 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kawai, Y., Moriya, S. & Ogasawara, N. Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol. Microbiol.47, 1113–1122 (2003). ArticleCASPubMed Google Scholar
Raskin, D. M. & de Boer, P. A. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol.181, 6419–6424 (1999). CASPubMedPubMed Central Google Scholar
Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev.12, 3419–3430 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rothfield, L., Justice, S. & Garcia-Lara, J. Bacterial cell division. Annu. Rev. Genet.33, 423–448 (1999). ArticleCASPubMed Google Scholar
Margolin, W. Themes and variations in prokaryotic cell division. FEMS Microbiol. Rev.24, 531–548 (2000). ArticleCASPubMed Google Scholar
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res.32, D277–D280 (2004). ArticleCASPubMedPubMed Central Google Scholar
Andrews, P. D., Harper, I. S. & Swedlow, J. R. To 5D and beyond: quantitative fluorescence microscopy in the postgenomic era. Traffic3, 29–36 (2002). ArticlePubMed Google Scholar
Ostrowski, S. G., Van Bell, C. T., Winograd, N. & Ewing, A. G. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science305, 71–73 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gisselson, L. A., Graneli, E. & Pallon, J. Variation in cellular nutrient status within a population of Dinophysis norvegica (Dinophyceae) growing in situ: single-cell elemental analysis by use of nuclear microprobe. Limnol. Oceanogr.46, 1237–1242 (2001). Article Google Scholar
Grossman, A. D. Integration of developmental signals and the initiation of sporulation in B. subtilis. Cell65, 5–8 (1991). ArticleCASPubMed Google Scholar
Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol.2, E328 (2004). ArticlePubMedCASPubMed Central Google Scholar
Stragier, P. in Bacillus subtilis and Its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 519–526 (ASM Press, Washington DC, 2002). Book Google Scholar
Errington, J. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol.1, 117–126 (2003). ArticleCAS Google Scholar
Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev.68, 234–262 (2004). This current review outlines recent advances in our understanding of endospore formation and provides an exceptional historical insight into the field. ArticleCASPubMedPubMed Central Google Scholar
Stragier, P. & Losick, R. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet.30, 297–241 (1996). ArticleCASPubMed Google Scholar
Bath, J., Wu, L. J., Errington, J. & Wang, J. C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell–prespore division septum. Science290, 995–997 (2000). ArticleCASPubMed Google Scholar
Levin, P. A. & Losick, R. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev.10, 478–488 (1996). ArticleCASPubMed Google Scholar
Ryter, A. Etude morphologique de la sporulation de Bacillus subtilis. Ann. Inst. Pasteur (Paris)108, 40–60 (1965). CAS Google Scholar
Ben-Yehuda, S., Rudner, D. Z. & Losick, R. RacA, A bacterial protein that anchors chromosomes to the poles. Science299, 532–536 (2003). ArticleCASPubMed Google Scholar
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev.64, 548–572 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chatton, É. & Pérard, C. Schizophytes du caecum du cobaye. II Metabacterium polyspora n. g., n. s. C. R. Hebd. Soc. Biol. (Paris)74, 1232–1234 (1913). Google Scholar
Robinow, C. F. Kurzer hinweis auf Metabacterium polyspora. Z. Tropenmed. Parasitol.8, 225–227 (1957). CASPubMed Google Scholar
Kunstyr, I., Schiel, R., Kaup, F. J., Uhr, G. & Kirchhoff, H. Giant gram-negative noncultivable endospore-forming bacteria in rodent intestines. Naturwissenschaften75, 525–527 (1988). ArticleCASPubMed Google Scholar
Angert, E. R. & Losick, R. M. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc. Natl Acad. Sci. USA95, 10218–10223 (1998). ArticleCASPubMedPubMed Central Google Scholar
Duda, V. I., Labedinsky, A. V., Mushegjan, M. S. & Mitjushina, L. L. A new anaerobic bacterium, forming up to five endospores per cell - Anaerobacter polyendosporus gen. et spec. nov. Arch. Microbiol.148, 121–127 (1987). ArticleCAS Google Scholar
Siunov, A. V. et al. Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium. Int. J. Syst. Bacteriol.49, 1119–1124 (1999). ArticleCASPubMed Google Scholar
Klaasen, H. L. et al. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab. Anim.27, 141–150 (1993). ArticleCASPubMed Google Scholar
Davis, C. P. & Savage, D. C. Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infect. Immun.10, 948–956 (1974). CASPubMedPubMed Central Google Scholar
Erlandsen, S. L. & Chase, D. G. Morphological alterations in the microvillous border of villous epithelial cells produced by intestinal microorganisms. Am. J. Clin. Nutr.27, 1277–1286 (1974). ArticleCASPubMed Google Scholar
Klaasen, H. L., Koopman, J. P., Poelma, F. G. & Beynen, A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev.8, 165–180 (1992). ArticleCASPubMed Google Scholar
Chase, D. G. & Erlandsen, S. L. Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum. J. Bacteriol.127, 572–583 (1976). CASPubMedPubMed Central Google Scholar
Ferguson, D. J. & Birch-Andersen, A. Electron microscopy of a filamentous, segmented bacterium attached to the small intestine of mice from a laboratory animal colony in Denmark. Acta Pathol. Microbiol. Scand.87, 247–252 (1979). This is a compelling account of the murine SFB life cycle. CAS Google Scholar
Umesaki, Y., Okada, Y., Imaoka, A., Setoyama, H. & Matsumoto, S. Interactions between epithelial cells and bacteria, normal and pathogenic. Science276, 964–965 (1997). ArticleCASPubMed Google Scholar
Klaasen, H. L. et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect. Immun.61, 303–306 (1993). CASPubMedPubMed Central Google Scholar
Fishelson, L., Montgomery, W. L. & Myrberg, A. A. A unique symbiosis in the gut of a tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science229, 49–51 (1985). Article Google Scholar
Clements, K. D., Sutton, D. C. & Choat, J. H. Occurrence and characteristics of unusual protistan symbionts from surgeonfishes Ancanthuridae of the Great Barrier Reef Australia. Marine Biol.102, 403–412 (1989). Article Google Scholar
Montgomery, W. L. & Pollak, P. E. Epulopiscium fishelsoni n. g., n. s., a protist of uncertain taxonomic affinities from the gut of an herbivorous reef fish. J. Protozool.35, 565–569 (1988). Article Google Scholar
Angert, E. R., Clements, K. D. & Pace, N. R. The largest bacterium. Nature362, 239–241 (1993). ArticleCASPubMed Google Scholar
Angert, E. R., Brooks, A. E. & Pace, N. R. Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J. Bacteriol.178, 1451–1456 (1996). ArticleCASPubMedPubMed Central Google Scholar
Angert, E. R. & Clements, K. D. Initiation of intracellular offspring in Epulopiscium. Mol. Microbiol.51, 827–835 (2004). With reference 45, demonstrates the power of fluorescence microscopy in describing developmental processes in bacteria that cannot be cultured in the laboratory. ArticleCASPubMed Google Scholar
Kunst, F. et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature390, 249–256 (1997). ArticleCASPubMed Google Scholar
Onyenwoke, R. U., Brill, J. A., Farahi, K. & Wiegel, J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch. Microbiol.182, 182–192 (2004). ArticleCASPubMed Google Scholar
Waterbury, J. B. & Stanier, R. Y. Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev.42, 2–44 (1978). This outstanding, lucid monograph describes the developmental patterns of 32 strains of cyanobacteria based on stunning electron micrographs and time-lapse, light microscopy of growing cells. CASPubMedPubMed Central Google Scholar
Mazouni, K., Domain, F., Cassier-Chauvat, C. & Chauvat, F. Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Mol. Microbiol.52, 1145–1158 (2004). ArticleCASPubMed Google Scholar
The Development of Drosophila melanogaster (eds. Bate, M. & Arias, A. M.) (Cold Spring Harbor Laboratory Press, New York, 1993).
Chater, K. F. & Hopwood, D. A. in Microbial Differentiation (eds Ashworth, J. M. & Smith, J. E.) 143–160 (Cambridge University Press, Cambridge, 1973). Google Scholar
Chater, K. F. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol.47, 685–713 (1993). ArticleCASPubMed Google Scholar
Chater, K. F. & Horinouchi, S. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol.48, 9–15 (2003). ArticleCASPubMed Google Scholar
Flardh, K. Growth polarity and cell division in Streptomyces. Curr. Opin. Microbiol.6, 564–571 (2003). A cell biological view of recent advances in understanding hyphal growth and spore development inStreptomyces. ArticleCASPubMed Google Scholar
Gehring, A. M., Nodwell, J. R., Beverley, S. M. & Losick, R. Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc. Natl Acad. Sci. USA97, 9642–9647 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol.21, 526–531 (2003). Article Google Scholar
Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417, 141–147 (2002). ArticlePubMed Google Scholar
McCormick, J. R., Su, E. P., Driks, A. & Losick, R. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol.14, 243–254 (1994). ArticleCASPubMed Google Scholar
Lechevalier, M. P. in Bergey's Manual of Systematic Bacteriology (eds Williams, S. T., Sharpe, M. E. & Holt, J. G.) 2405–2417 (Williams and Wilkins, Baltimore, 1989). Google Scholar
Vobis, G. in Bergey's Manual of Systematic Bacteriology (eds Williams, S. T., Sharpe, M. E. & Holt, J. G.) 2418–2450 (Williams and Wilkins, Baltimore, 1989). Google Scholar
Vobis, G. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.) 1029–1060 (Springer, New York, 1992). Google Scholar
Parenti, F. & Coronelli, C. Members of the genus Actinoplanes and their antibiotics. Annu. Rev. Microbiol.33, 389–411 (1979). ArticleCASPubMed Google Scholar
Lazzarini, A., Cavaletti, L., Toppo, G. & Marinelli, F. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek78, 399–405 (2000). ArticleCASPubMed Google Scholar
Lechevalier, H. & Holbert, P. E. Electron microscopic observation of the sporangial structure of a strain of Actinoplanes. J. Bacteriol.89, 217–222 (1965). CASPubMedPubMed Central Google Scholar
Lechevalier, H. A., Lechevalier, M. P. & Holbert, P. E. Electron microscopic observation of the sporangial structure of strains of Actinoplanaceae. J. Bacteriol.92, 1228–1235 (1966). Together with reference 80, this paper provides a detailed ultrastructure-based description of sporangial development in Micromonosporaceae with comparisons to streptomycete spore development. CASPubMedPubMed Central Google Scholar
Stolp, H. & Starr, M. P. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek29, 217–248 (1963). ArticleCASPubMed Google Scholar
Starr, M. P. & Baigent, N. L. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria. J. Bacteriol.91, 2006–2017 (1966). CASPubMedPubMed Central Google Scholar
Diedrich, D. L., Denny, C. F., Hashimoto, T. & Conti, S. F. Facultatively parasitic strain of Bdellovibrio bacteriovorus. J. Bacteriol.101, 989–996 (1970). CASPubMedPubMed Central Google Scholar
Burnham, J. C., Hashimoto, T. & Conti, S. F. Ultrastructure and cell division of a facultatively parasitic strain of Bdellovibrio bacteriovorus. J. Bacteriol.101, 997–1004 (1970). CASPubMedPubMed Central Google Scholar
Rendulic, S. et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science303, 689–692 (2004). ArticleCASPubMed Google Scholar
Cotter, T. W. & Thomashow, M. F. A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host-independent mutant. J. Bacteriol.174, 6011–6017 (1992). ArticleCASPubMedPubMed Central Google Scholar
Ajithkumar, V. P. et al. A novel filamentous Bacillus sp., strain NAF001, forming endospores and budding cells. Microbiol.147, 1415–1423 (2001). ArticleCAS Google Scholar
Waterbury, J. & Stanier, R. Two unicellular cyanobacteria which reproduce by budding. Arch. Microbiol.115, 249–257 (1977). ArticleCAS Google Scholar
Staley, J. T. & Fuerst, J. A. in Bergey's Manual of Systematic Bacteriology (eds Staley, J. T., Bryant, M. P., Pfennig, N. & Holt, J. G.) 1890–1993 (Williams and Wilkins, Baltimore 1989). Google Scholar
McDonald, I. R. et al. A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ. Microbiol.4, 193–203 (2002). ArticleCASPubMed Google Scholar
Moore, R. L. The biology of Hyphomicrobium and other prosthecate, budding bacteria. Ann. Rev. Microbiol.35, 567–594 (1981). ArticleCAS Google Scholar
Ausmees, N. & Jacobs-Wagner, C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu. Rev. Microbiol.57, 225–247 (2003). ArticleCASPubMed Google Scholar
Quardokus, E. M. & Brun, Y. V. Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Curr. Opin. Microbiol.6, 541–549 (2003). ArticleCASPubMed Google Scholar
Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell115, 705–713 (2003). ArticleCASPubMed Google Scholar
Zerfas, P. M., Kessel, M., Quintero, E. J. & Weiner, R. M. Fine-structure evidence for cell membrane partitioning of the nucleoid and cytoplasm during bud formation in Hyphomonas species. J. Bacteriol.179, 148–156 (1997). Remarkable electron micrographs showing the transit of vesicles through theHyphomonasprostheca to the developing bud. ArticleCASPubMedPubMed Central Google Scholar
Brun, Y. V. & Janakiraman, R. in Prokaryotic Development (eds Brun, Y. V. & Shimkets, L. J.) 297–317 (American Society for Microbiology Press, Washington DC, 2000). Book Google Scholar
Bernal, A., Ear, U. & Kyrpides, N. Genomes onLine database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res.29, 126–127 (2001). ArticleCASPubMedPubMed Central Google Scholar