Actin-dependent movement of bacterial pathogens (original) (raw)
Monack, D. M. & Theriot, J. A. Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake. Cell. Microbiol.3, 633–647 (2001). ArticleCASPubMed Google Scholar
Robbins, J. R. et al. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol.146, 1333–1350 (1999). ArticleCASPubMedPubMed Central Google Scholar
Perrin, A. J., Jiang, X., Birmingham, C. L., So, N. S. & Brumell, J. H. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol.14, 806–811 (2004). ArticleCASPubMed Google Scholar
Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J.11, 1981–1990 (1992). ArticleCASPubMedPubMed Central Google Scholar
Makino, S., Sasakawa, C., Kamata, K., Kurata, T. & Yoshikawa, M. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell46, 551–555 (1986). ArticleCASPubMed Google Scholar
Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA86, 3867–3871 (1989). ArticleCASPubMedPubMed Central Google Scholar
Sansonetti, P. J., Arondel, J., Fontaine, A., d'Hauteville, H. & Bernardini, M. L. ompB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine9, 416–422 (1991). ArticleCASPubMed Google Scholar
Gouin, E., Welch, M. D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol.8, 35–45 (2005). ArticleCASPubMed Google Scholar
Kocks, C., Hellio, R., Gounon, P., Ohayon, H. & Cossart, P. Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Sci.105, 699–710 (1993). ArticleCASPubMed Google Scholar
Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc. Natl Acad. Sci. USA92, 6572–6576 (1995). ArticleCASPubMedPubMed Central Google Scholar
Stevens, M. P. et al. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol.56, 40–53 (2005). This paper reported the identification of the bacterial factor that is required forB. pseudomalleiactin-based motility in host cells. Biochemical studies showed that the factor (BimA) interacts with host-cell actin and can stimulate actin polymerizationin vitroin an Arp2/3-independent manner. ArticleCASPubMed Google Scholar
Brundage, R. A., Smith, G. A., Camilli, A., Theriot, J. A. & Portnoy, D. A. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Natl Acad. Sci. USA90, 11890–11894 (1993). ArticleCASPubMedPubMed Central Google Scholar
Magdalena, J. & Goldberg, M. B. Quantification of Shigella IcsA required for bacterial actin polymerization. Cell Motil. Cytoskeleton51, 187–196 (2002). ArticleCASPubMed Google Scholar
Stamm, L. M. et al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med.198, 1361–1368 (2003). The first study to show thatM. marinumescapes from intracellular phagosomes and also spreads from cell to cell. Although the identity of the bacterial actin-based motility factor is still unknown, this study identified host-cell proteins that might be involved in motility by co-localization studies. ArticleCASPubMedPubMed Central Google Scholar
Goldberg, M. B., Theriot, J. A. & Sansonetti, P. J. Regulation of surface presentation of IcsA, a Shigella protein essential to intracellular movement and spread, is growth phase dependent. Infect. Immun.62, 5664–5668 (1994). ArticleCASPubMedPubMed Central Google Scholar
Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature385, 265–269 (1997). Describes the initial purification of the human Arp2/3 complex and its biochemical characterization as an actin-polymerizing factor inL. monocytogenes. ArticleCASPubMed Google Scholar
Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science281, 105–108 (1998). ArticleCASPubMed Google Scholar
Kocks, C. et al. _L. monocytogenes_-induced actin assembly requires the actA gene product, a surface protein. Cell68, 521–531 (1992). ArticleCASPubMed Google Scholar
Mengaud, J., Geoffroy, C. & Cossart, P. Identification of a new operon involved in Listeria monocytogenes virulence: its first gene encodes a protein homologous to bacterial metalloproteases. Infect. Immun.59, 1043–1049 (1991). ArticleCASPubMedPubMed Central Google Scholar
Vazquez-Boland, J. A. et al. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun.60, 219–230 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kocks, C. et al. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol. Microbiol.18, 413–423 (1995). ArticleCASPubMed Google Scholar
Smith, G. A., Portnoy, D. A. & Theriot, J. A. Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol. Microbiol.17, 945–951 (1995). ArticleCASPubMed Google Scholar
Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA96, 4908–4913 (1999). ArticleCASPubMedPubMed Central Google Scholar
Boujemaa-Paterski, R. et al. Listeria protein ActA mimics WASP family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry40, 11390–11404 (2001). ArticleCASPubMed Google Scholar
Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature401, 613–616 (1999). This study characterized the minimal requirements for motility of bothL. monocytogenesandE. coliIcsA in a cell-free system. ArticleCASPubMed Google Scholar
Zalevsky, J., Grigorova, I. & Mullins, R. D. Activation of the Arp2/3 complex by the Listeria ActA protein. ActA binds two actin monomers and three subunits of the Arp2/3 complex. J. Biol. Chem.276, 3468–3475 (2001). ArticleCASPubMed Google Scholar
Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep.2, 850–857 (2001). This study used N-WASP-deficient cells to prove the essential role of N-WASP in the actin cytoskeletal rearrangements induced by AEE. coliandS. flexneri. It also showed for the first time that N-WASP is dispensable for cellular filopodia formation. ArticleCASPubMedPubMed Central Google Scholar
Lasa, I., David, V., Gouin, E., Marchand, J. B. & Cossart, P. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol.18, 425–436 (1995). ArticleCASPubMed Google Scholar
Lasa, I. et al. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J.16, 1531–1540 (1997). ArticleCASPubMedPubMed Central Google Scholar
Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol.135, 647–660 (1996). ArticleCASPubMed Google Scholar
Golsteyn, R. M., Beckerle, M. C., Koay, T. & Friederich, E. Structural and functional similarities between the human cytoskeletal protein zyxin and the ActA protein of Listeria monocytogenes. J. Cell Sci.110, 1893–1906 (1997). ArticleCASPubMed Google Scholar
Fradelizi, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nature Cell Biol.3, 699–707 (2001). ArticleCASPubMed Google Scholar
Brieher, W. M., Coughlin, M. & Mitchison, T. J. Fascin-mediated propulsion of Listeria monocytogenes independent of frequent nucleation by the Arp2/3 complex. J. Cell Biol.165, 233–242 (2004). This report showed thatL. monocytogenesactin-based motility in cell-free systems can be divided into an Arp2/3-dependent and an Arp2/3-independent phase. The Arp2/3-independent phase (the elongation phase) required the addition of cellular fascin and resulted in tails that consist of parallel bundles similar to those formed byRickettsia. ArticleCASPubMedPubMed Central Google Scholar
Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci.112, 1697–1708 (1999). ArticleCASPubMed Google Scholar
Heinzen, R. A., Grieshaber, S. S., Van Kirk, L. S. & Devin, C. J. Dynamics of actin-based movement by Rickettsia rickettsii in Vero cells. Infect. Immun.67, 4201–4207 (1999). ArticleCASPubMedPubMed Central Google Scholar
Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstadt, T. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immun.61, 1926–1935 (1993). ArticleCASPubMedPubMed Central Google Scholar
Teysseire, N., Chiche-Portiche, C. & Raoult, D. Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res. Microbiol.143, 821–829 (1992). ArticleCASPubMed Google Scholar
Gouin, E. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature427, 457–461 (2004). One of two papers published in 2004 reporting the identity of theRickettsiaactin-based motility factor. Characterized theR. conoriiRickA protein and demonstrated its expression on intracellular bacteria and its activityin vitroas an NPF. Also reported the conclusive co-localization of Arp2/3 withRickettsiatails. ArticleCASPubMed Google Scholar
Jeng, R. L. et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell. Microbiol.6, 761–769 (2004). One of two papers published in 2004 reporting the identity of theRickettsiaactin-based motility factor. This concentrated on characterization of theR. rickettsiiRickA protein, describing its similarity in sequence to WASP-family proteins and its ability to promote actin nucleationin vitro. ArticleCASPubMed Google Scholar
Simser, J. A., Rahman, M. S., Dreher-Lesnick, S. M. & Azad, A. F. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol. Microbiol.58, 71–79 (2005). ArticleCASPubMed Google Scholar
Van Kirk, L. S., Hayes, S. F. & Heinzen, R. A. Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect. Immun.68, 4706–4713 (2000). ArticleCASPubMedPubMed Central Google Scholar
Harlander, R. S. et al. Effects of ectopically expressed neuronal Wiskott–Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility. Infect. Immun.71, 1551–1556 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell109, 509–521 (2002). ArticleCASPubMed Google Scholar
Friederich, E. et al. Targeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function. EMBO J.14, 2731–2744 (1995). ArticleCASPubMedPubMed Central Google Scholar
Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature357, 257–260 (1992). ArticleCASPubMed Google Scholar
McLeod, M. P. et al. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J. Bacteriol.186, 5842–5855 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stevens, M. P. & Galyov, E. E. Exploitation of host cells by Burkholderia pseudomallei. Int. J. Med. Microbiol.293, 549–555 (2004). ArticleCASPubMed Google Scholar
Kespichayawattana, W., Rattanachetkul, S., Wanun, T., Utaisincharoen, P. & Sirisinha, S. Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect. Immun.68, 5377–5384 (2000). ArticleCASPubMedPubMed Central Google Scholar
Breitbach, K. et al. Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Cell. Microbiol.5, 385–393 (2003). A comprehensive study of the cellular factors recruited toB. pseudomalleiactin-rich tails in infected cells. Notably, this study reported that Arp2/3 might be required for motility but that N-WASP and members of the Ena/VASP family are dispensable. ArticleCASPubMed Google Scholar
Stevens, J. M. et al. Actin-binding proteins from Burkholderia mallei and B. thailandensis can functionally compensate for the actin-based motility defect of a B. pseudomallei bimA mutant. J. Bacteriol.187, 7857–7862 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun.51, 461–469 (1986). ArticleCASPubMedPubMed Central Google Scholar
Pal, T., Newland, J. W., Tall, B. D., Formal, S. B. & Hale, T. L. Intracellular spread of Shigella flexneri associated with the kcpA locus and a 140-kilodalton protein. Infect. Immun.57, 477–486 (1989). ArticleCASPubMedPubMed Central Google Scholar
Allaoui, A., Mounier, J., Prevost, M. C., Sansonetti, P. J. & Parsot, C. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol.6, 1605–1616 (1992). ArticleCASPubMed Google Scholar
Kadurugamuwa, J. L., Rohde, M., Wehland, J. & Timmis, K. N. Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeletal protein vinculin. Infect. Immun.59, 3463–3471 (1991). ArticleCASPubMedPubMed Central Google Scholar
Prevost, M. C. et al. Unipolar reorganization of F-actin layer at bacterial division and bundling of actin filaments by plastin correlate with movement of Shigella flexneri within HeLa cells. Infect. Immun.60, 4088–4099 (1992). ArticleCASPubMedPubMed Central Google Scholar
Sansonetti, P. J., Mounier, J., Prevost, M. C. & Mege, R. M. Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell76, 829–839 (1994). ArticleCASPubMed Google Scholar
Lett, M. C. et al. virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the VirG protein and determination of the complete coding sequence. J. Bacteriol.171, 353–359 (1989). ArticleCASPubMedPubMed Central Google Scholar
Desvaux, M., Parham, N. J. & Henderson, I. R. The autotransporter secretion system. Res. Microbiol.155, 53–60 (2004). ArticleCASPubMed Google Scholar
Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol.146, 1319–1332 (1999). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J.17, 2767–2776 (1998). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, T. et al. Neural Wiskott–Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell. Microbiol.4, 223–233 (2002). ArticleCASPubMed Google Scholar
Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol.2, 441–448 (2000). ArticleCASPubMed Google Scholar
Suzuki, T. et al. Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J. Exp. Med.191, 1905–1920 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mounier, J. et al. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci.112, 2069–2080 (1999). ArticleCASPubMed Google Scholar
Burton, E. A., Oliver, T. N. & Pendergast, A. M. Abl kinases regulate actin comet tail elongation via an N-WASP-dependent pathway. Mol. Cell. Biol.25, 8834–8843 (2005). ArticleCASPubMedPubMed Central Google Scholar
Stamm, L. M. et al. Role of the WASP family proteins for Mycobacterium marinum actin tail formation. Proc. Natl Acad. Sci. USA102, 14837–14842 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell87, 227–239 (1996). ArticleCASPubMed Google Scholar
Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nature Rev. Microbiol.2, 123–140 (2004). ArticleCAS Google Scholar
Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell Motil. Cytoskeleton34, 279–287 (1996). ArticleCASPubMed Google Scholar
Shaner, N. C., Sanger, J. W. & Sanger, J. M. Actin and α-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. Cell Motil. Cytoskeleton60, 104–120 (2005). ArticleCASPubMed Google Scholar
Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell91, 511–520 (1997). The first demonstration of a bacterium that translocates its own receptor into the eukaryotic host cell. The translocated receptor (Tir) was also shown to be required for actin nucleation at the plasma membrane. ArticleCASPubMed Google Scholar
Campellone, K. G. & Leong, J. M. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol. Microbiol.56, 416–432 (2005). ArticleCASPubMed Google Scholar
Liu, H., Magoun, L., Luperchio, S., Schauer, D. B. & Leong, J. M. The Tir-binding region of enterohaemorrhagic Escherichia coli intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling. Mol. Microbiol.34, 67–81 (1999). ArticlePubMed Google Scholar
Kenny, B. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol.31, 1229–1241 (1999). ArticleCASPubMed Google Scholar
Deng, W., Vallance, B. A., Li, Y., Puente, J. L. & Finlay, B. B. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol. Microbiol.48, 95–115 (2003). ArticleCASPubMed Google Scholar
Campellone, K. G., Giese, A., Tipper, D. J. & Leong, J. M. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol. Microbiol.43, 1227–1241 (2002). ArticleCASPubMed Google Scholar
Campellone, K. G. et al. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J. Cell Biol.164, 407–416 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol.3, 856–859 (2001). ArticleCASPubMed Google Scholar
Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun.69, 3315–3322 (2001). ArticleCASPubMedPubMed Central Google Scholar
Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature401, 926–929 (1999). ArticleCASPubMed Google Scholar
Scaplehorn, N. et al. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol.12, 740–745 (2002). ArticleCASPubMed Google Scholar
Campellone, K. G. & Leong, J. M. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol.6, 82–90 (2003). ArticleCASPubMed Google Scholar
DeVinney, R., Puente, J. L., Gauthier, A., Goosney, D. & Finlay, B. B. Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol.41, 1445–1458 (2001). ArticleCASPubMed Google Scholar
DeVinney, R. et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun.67, 2389–2398 (1999). ArticleCASPubMedPubMed Central Google Scholar
Paton, A. W., Manning, P. A., Woodrow, M. C. & Paton, J. C. Translocated intimin receptors (Tir) of Shiga-toxigenic Escherichia coli isolates belonging to serogroups O26, O111, and O157 react with sera from patients with hemolytic–uremic syndrome and exhibit marked sequence heterogeneity. Infect. Immun.66, 5580–5586 (1998). ArticleCASPubMedPubMed Central Google Scholar
Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell7, 217–228 (2004). ArticleCASPubMed Google Scholar
Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol.6, 1167–1183 (2004). ArticleCASPubMed Google Scholar
Kenny, B. The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell. Microbiol.3, 499–510 (2001). ArticleCASPubMed Google Scholar
Vlisidou, I. et al. Role of intimin-Tir interactions and the Tir-cytoskeleton coupling protein (TccP) in the colonization of calves and lambs by Escherichia coli. Infect. Immun.74, 758–764 (2006). ArticleCASPubMedPubMed Central Google Scholar
Paavilainen, V. O., Bertling, E., Falck, S. & Lappalainen, P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol.14, 386–394 (2004). ArticleCASPubMed Google Scholar
Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol.16, 99–105 (2004). ArticleCASPubMed Google Scholar
Quinlan, M. E., Heuser, J. E., Kerkhoff, E. & Mullins, R. D. Drosophila Spire is an actin nucleation factor. Nature433, 382–388 (2005). ArticleCASPubMed Google Scholar
Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol.138, 375–384 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J. Biol. Chem.276, 26448–26452 (2001). ArticleCASPubMed Google Scholar
Rottner, K., Lommel, S., Wehland, J. & Stradal, T. E. Pathogen-induced actin filament rearrangement in infectious diseases. J. Pathol.204, 396–406 (2004). ArticleCASPubMed Google Scholar
Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J.14, 1314–1321 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gouin, E., Dehoux, P., Mengaud, J., Kocks, C. & Cossart, P. iactA of Listeria ivanovii, although distantly related to Listeria monocytogenes actA, restores actin tail formation in an L. monocytogenes actA mutant. Infect. Immun.63, 2729–2737 (1995). ArticleCASPubMedPubMed Central Google Scholar