The interaction of bacterial pathogens with platelets (original) (raw)
Petti, C. A. & Fowler, V. G. Jr. Staphylococcus aureus bacteremia and endocarditis. Cardiol. Clin.21, 219?233 (2003). ArticlePubMed Google Scholar
Levi, M., Keller, T. T., van Gorp, E. & ten Cate, H. Infection and inflammation and the coagulation system. Cardiovasc. Res.60, 26?39 (2003). ArticleCASPubMed Google Scholar
Franchini, M. & Veneri, D. Helicobacter pylori infection and immune thrombocytopenic purpura: an update. Helicobacter9, 342?346 (2004). ArticlePubMed Google Scholar
Ishani, A., Collins, A. J., Herzog, C. A. & Foley, R. N. Septicemia, access and cardiovascular disease in dialysis patients: The USRDS wave 2 study. Kid ney Int.68, 311 (2005). Article Google Scholar
Foley, R. N., Guo, H., Snyder, J. J., Gilbertson, D. T. & Collins, A. J. Septicemia in the United States dialysis population, 1991 to 1999. J. Am. Soc. Nephrol.15, 1038?1045 (2004). ArticlePubMed Google Scholar
Corrado, E. et al. Markers of inflammation and infection influence the outcome of patients with baseline asymptomatic carotid lesions: a 5-year follow-up study. Stroke37, 482?486 (2006). ArticleCASPubMed Google Scholar
Kerrigan, S. W. et al. A role for glycoprotein Ib in _Streptococcus sanguis_-induced platelet aggregation. Blood100, 509?516 (2002). Demonstrates the role of GPIb inS. sanguis-mediated platelet aggregation. ArticleCASPubMed Google Scholar
O'Brien, L. et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol. Microbiol.44, 1033?1044 (2002). Identifies ClfA as a key mediator ofS. aureus-induced aggregation. ArticleCASPubMed Google Scholar
Born, G. The aggregation of blood platelets by adenosine diphosphate and its reversal. Nature194, 927?929 (1962). ArticleCASPubMed Google Scholar
Emilia, G. et al. Helicobacter pylori eradication can induce platelet recovery in idiopathic thrombocytopenic purpura. Blood97, 812?814 (2001). Shows an association betweenH. pyloriinfection and thrombocytopenia. ArticleCASPubMed Google Scholar
Veneri, D., Krampera, M. & Franchini, M. High prevalence of sustained remission of idiopathic thrombocytopenic purpura after Helicobacter pylori eradication: a long-term follow-up study. Platelets16, 117?119 (2005). ArticleCASPubMed Google Scholar
Guessous, F. et al. Shiga toxin 2 and lipopolysaccharide cause monocytic THP-1 cells to release factors which activate platelet function. Thromb. Haemost.94, 1019?1027 (2005). ArticleCASPubMed Google Scholar
Hambleton, J., Leung, L. L. & Levi, M. Coagulation: consultative hemostasis. Hematology2002, 335?352 (2002). Article Google Scholar
Proulx, F., Seidman, E. G. & Karpman, D. Pathogenesis of Shiga toxin-associated hemolytic uremic syndrome. Pediatr. Res.50, 163?171 (2001). ArticleCASPubMed Google Scholar
Schierholz, J., Beuth, J. & Pulverer, G. ?Difficult to treat infections? pharmacokinetic and pharmacodynamic factors?a review. Acta Microbiol. Immunol. Hung.47, 1?8 (2000). CASPubMed Google Scholar
Yeaman, M. & Bayer, A. Antimicrobial host defense. In Platelets (ed. Michelson, A. D.) 469?490 (Academic Press, London, 2002). Google Scholar
Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis.39, 309?317 (2004). ArticlePubMed Google Scholar
Petti, C. A. & Fowler, V. G. Jr. Staphylococcus aureus bacteremia and endocarditis. Infect. Dis. Clin. North Am.16, 413?435, x?xi (2002). ArticlePubMed Google Scholar
Muhlestein, J. B. & Anderson, J. L. Chronic infection and coronary artery disease. Cardiol. Clin.21, 333?362 (2003). ArticlePubMed Google Scholar
Ott, S. J. et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation113, 929?937 (2006). Shows the presence of many pathogens in atherosclerotic plaques. ArticlePubMed Google Scholar
Zhu, J. et al. Prospective study of pathogen burden and risk of myocardial infarction or death. Circulation103, 45?51 (2001). Suggests that the number of different infections that a patient has had is a predictor of cardiovascular outcome. ArticleCASPubMed Google Scholar
Elkind, M. & Cole, J. Do common infections cause stroke? Semin. Neurol.26, 88?99 (2006). ArticlePubMed Google Scholar
Baddour, L. M. et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation111, e394?e434 (2005). Important guideline document on infective endocarditis from the American Heart Association. ArticlePubMed Google Scholar
Fowler, V. G. Jr et al. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA293, 3012?3021 (2005). Shows thatS. aureusis now the most common cause of IE in the developed world. ArticleCASPubMed Google Scholar
Seymour, R. A., Preshaw, P. M., Thomason, J. M., Ellis, J. S. & Steele, J. G. Cardiovascular diseases and periodontology. J. Clin. Periodontol.30, 279?292 (2003). ArticleCASPubMed Google Scholar
Gupta, S. et al. Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation96, 404?407 (1997). ArticleCASPubMed Google Scholar
Gurfinkel, E., Bozovich, G., Daroca, A., Beck, E. & Mautner, B. Randomised trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS pilot study. Lancet350, 404 (1997). ArticleCASPubMed Google Scholar
Meier, C. R., Derby, L. E., Jick, S. S., Vasilakis, C. & Jick, H. Antibiotics and risk of subsequent first-time acute myocardial infarction. JAMA281, 427?431 (1999). ArticleCASPubMed Google Scholar
Jespersen, C. M. et al. Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. BMJ332, 22?27 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Andraws, R., Berger, J. & Brown, D. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA293, 2641?2647 (2005). ArticleCASPubMed Google Scholar
Espinola-Klein, C. et al. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation105, 15?21 (2002). ArticlePubMed Google Scholar
Rupprecht, H. J. et al. Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation104, 25?31 (2001). ArticleCASPubMed Google Scholar
Brodala, N. et al. Porphyromonas gingivalis bacteremia induces coronary and aortic atherosclerosis in normocholesterolemic and hypercholesterolemic pigs. Arterioscler. Thromb. Vasc. Biol.25, 1446?1451 (2005). ArticleCASPubMed Google Scholar
Lalla, E. et al. Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol.23, 1405?1411 (2003). Shows that normal exposure to an oral pathogen enhances atherosclerosis without bacteraemia. ArticleCASPubMed Google Scholar
Li, L., Messas, E., Batista, E. L. Jr, Levine, R. A. & Amar, S. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation105, 861?867 (2002). Shows that exposure to bacteria enhances atherosclerosis in a mouse model. ArticlePubMed Google Scholar
Gawaz, M. Platelets in the onset of atherosclerosis. Blood Cells Mol. Dis.36, 206?210 (2006). ArticleCASPubMed Google Scholar
Shoji, T. et al. Platelet-monocyte aggregates are independently associated with occurrence of carotid plaques in type 2 diabetic patients. J. Atheroscler. Thromb.12, 344?352 (2005). ArticleCASPubMed Google Scholar
Shoji, T. et al. Platelet activation is associated with hypoadiponectinemia and carotid atherosclerosis. Atherosclerosis 28 Nov 2005 (doi:10.1016/j.atherosclerosis.2005.10.034).
Hartwig, J. H. Platelet structure. In Platelets (ed. Michelson, A. D.) 37?52 (Academic Press, London. 2002). Google Scholar
Shattil, S. J. & Newman, P. J. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood104, 1606?1615 (2004). ArticleCASPubMed Google Scholar
Yeaman, M. R. & Bayer, A. S. Antimicrobial peptides from platelets. Drug. Resist. Updat.2, 116?126 (1999). ArticleCASPubMed Google Scholar
Yeaman, M. R., Tang, Y. Q., Shen, A. J., Bayer, A. S. & Selsted, M. E. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect. Immun.65, 1023?1031 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yeaman, M. R. The role of platelets in antimicrobial host defense. Clin. Infect. Dis.25, 951?968 (1997). ArticleCASPubMed Google Scholar
Cole, A. M. et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J. Immunol.167, 623?627 (2001). ArticleCASPubMed Google Scholar
Krijgsveld, J. et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem.275, 20374?20381 (2000). ArticleCASPubMed Google Scholar
Bayer, A. S. et al. In vitro resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob. Agents Chemother.42, 3169?3172 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fowler, V. G. et al. In vitro resistance to thrombin-induced platelet microbicidal protein in isolates of Staphylococcus aureus from endocarditis patients correlates with an intravascular device source. J. Infect. Dis.182, 1251?1254 (2000). ArticleCASPubMed Google Scholar
Fowler, V. G. et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis.190, 1140?1149 (2004). ArticleCASPubMed Google Scholar
Dhawan, V. K. et al. Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus. Infect. Immun.65, 3293?3299 (1997). Suggests that strains which are more resistant to PMPs might also be more virulent. ArticleCASPubMedPubMed Central Google Scholar
Bayer, A. S. et al. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect. Immun.68, 3548?3553 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bayer, A. S. et al. Transposon disruption of the complex I NADH oxidoreductase gene (snoD) in Staphylococcus aureus is associated with reduced susceptibility to the microbicidal activity of thrombin-induced platelet microbicidal protein 1. J. Bacteriol.188, 211?222 (2006). ArticleCASPubMedPubMed Central Google Scholar
Koo, S. P., Bayer, A. S., Kagan, B. L. & Yeaman, M. R. Membrane permeabilization by thrombin-induced platelet microbicidal protein 1 is modulated by transmembrane voltage polarity and magnitude. Infect. Immun.67, 2475?2481 (1999). ArticleCASPubMedPubMed Central Google Scholar
Weidenmaier, C. et al. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect. Immun.73, 8033?8038 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kupferwasser, L. I. et al. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob. Agents Chemother.43, 2395?2399 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pawar, P., Shin, P. K., Mousa, S. A., Ross, J. M. & Konstantopoulos, K. Fluid shear regulates the kinetics and receptor specificity of Staphylococcus aureus binding to activated platelets. J. Immunol.173, 1258?1265 (2004). ArticleCASPubMed Google Scholar
Youssefian, T., Drouin, A., Masse, J. M., Guichard, J. & Cramer, E. M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood99, 4021?4029 (2002). ArticleCASPubMed Google Scholar
Rooijakkers, S. H., van Kessel, K. P. & van Strijp, J. A. Staphylococcal innate immune evasion. Trends Microbiol.13, 596?601 (2005). ArticleCASPubMed Google Scholar
Foster, T. J. Immune evasion by staphylococci. Nature Rev. Microbiol.3, 948?958 (2005). ArticleCAS Google Scholar
Levin, J. The evolution of mammalian platelets. In Platelets (ed. Michelson, A. D.) 3?20 (Academic Press, London, 2002). Google Scholar
Des Prez, R., Horowitz, H. I. & Hook, E. W. Effects of bacterial endotoxin on rabbit platelets: I. Platelet aggregation and release of platelet factors in vitro. J. Exp. Med.114, 857?874 (1961). ArticleCASPubMedPubMed Central Google Scholar
Copley, A., Maupin, B. & Balea, T. The agglutinant and adhesive behaviour of isolated human and rabbit platelets in contact with various strains of mycobacteria. Acta Tuberc. Scand.37, 151?161 (1959). CASPubMed Google Scholar
Clawson, C., Rao, G. & White, J. G. Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am. J. Pathol.81, 411?420 (1975). CASPubMedPubMed Central Google Scholar
Clawson, C. & White, J. G. Platelet interaction with bacteria. V. Ultrastructure of congenital afibrinogenemic platelets. Am. J. Pathol.98, 197?211 (1980). CASPubMedPubMed Central Google Scholar
Clawson, C., White, J. G. & Herzberg, M. Platelet interaction with bacteria. VI. Contrasting the role of fibrinogen and fibronectin. Am. J. Hematol.9, 45?53 (1980). Article Google Scholar
Clawson, C. & White, J. G. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am. J. Pathol.65, 367?380 (1971). CASPubMedPubMed Central Google Scholar
Clawson, C. & White, J. G. Platelet interaction with bacteria. II. Fate of the bacteria. Am. J. Pathol.65, 381?397 (1971). CASPubMedPubMed Central Google Scholar
Humphrey, J. H. & Jaques, R. The release of histamine and 5-hydroxytryptamine (serotonin) from platelets by antigen?antibody reactions (in vitro). J. Physiol.128, 9 (1955). ArticleCASPubMedPubMed Central Google Scholar
Hawiger, J., Marney, S. R. Jr, Colley, D. G. & Des Prez, R. M. Complement-dependent platelet injury by staphylococcal protein A. J. Exp. Med.136, 68?80 (1972). ArticleCASPubMedPubMed Central Google Scholar
Manohar, M., Maheswaran, S. K., Frommes, S. P. & Lindorfer, R. K. Platelet damaging factor, a fifth activity of staphylococcal α-toxin. J. Bacteriol.94, 224?231 (1967). ArticleCASPubMedPubMed Central Google Scholar
Hawiger, J. et al. Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin G Fc fragment receptor. J. Clin. Invest.64, 931?937 (1979). ArticleCASPubMedPubMed Central Google Scholar
Moreillon, P. et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect. Immun.63, 4738?4743 (1995). ArticleCASPubMedPubMed Central Google Scholar
Bayer, A. S. et al. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Infect. Immun.63, 3634?3641 (1995). ArticleCASPubMedPubMed Central Google Scholar
Foster, T. J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol.6, 484?488 (1998). ArticleCASPubMed Google Scholar
Schwarz-Linek, U. et al. Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature423, 177?181 (2003). ArticleCASPubMed Google Scholar
Massey, R. C. et al. Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell. Microbiol.3, 839?851 (2001). ArticleCASPubMed Google Scholar
Herrmann, M., Lai, Q. J., Albrecht, R. M., Mosher, D. F. & Proctor, R. A. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J. Infect. Dis.167, 312?322 (1993). ArticleCASPubMed Google Scholar
Sullam, P. M., Bayer, A. S., Foss, W. M. & Cheung, A. L. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect. Immun.64, 4915?4921 (1996). Suggests a key role for bacteria?platelet interactions in IE pathogenesis. ArticleCASPubMedPubMed Central Google Scholar
Siboo, I. R., Cheung, A. L., Bayer, A. S. & Sullam, P. M. Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect. Immun.69, 3120?3127 (2001). ArticleCASPubMedPubMed Central Google Scholar
Loughman, A. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol.57, 804?818 (2005). Shows the role for antibody and complement in ClfA-mediated aggregation. ArticleCASPubMed Google Scholar
Fitzgerald, J. R. et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol. Microbiol.59, 212?230 (2006). Describes the molecular mechanisms of FnBP-mediated platelet aggregation. ArticleCASPubMed Google Scholar
Saravia-Otten, P., Muller, H. P. & Arvidson, S. Transcription of S_taphylococcus aureus_ fibronectin binding protein genes is negatively regulated by agr and an _agr_-independent mechanism. J. Bacteriol.179, 5259?5263 (1997). ArticleCASPubMedPubMed Central Google Scholar
Que, Y. A. et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med.201, 1627?1635 (2005). Animal data on the roles of ClfA and FnBp in IE. ArticleCASPubMedPubMed Central Google Scholar
Casolini, F. et al. Antibody response to fibronectin-binding adhesin FnbpA in patients with Staphylococcus aureus infections. Infect. Immun.66, 5433?5442 (1998). ArticleCASPubMedPubMed Central Google Scholar
Heilmann, C. et al. Staphylococcus aureus fibronectin-binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB. J. Infect. Dis.190, 321?329 (2004). ArticleCASPubMed Google Scholar
Niemann, S. et al. Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets. Circulation110, 193?200 (2004). ArticleCASPubMed Google Scholar
Dryla, A. et al. Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin. Diagn. Lab. Immunol.12, 387?398 (2005). CASPubMedPubMed Central Google Scholar
Nguyen, T., Ghebrehiwet, B. & Peerschke, E. I. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect. Immun.68, 2061?2068 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hartleib, J. et al. Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood96, 2149?2156 (2000). CASPubMed Google Scholar
Siboo, I. R., Chambers, H. F. & Sullam, P. M. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect. Immun.73, 2273?2280 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ford, I., Douglas, C. W., Heath, J., Rees, C. & Preston, F. E. Evidence for the involvement of complement proteins in platelet aggregation by Streptococcus sanguis NCTC 7863. Br. J. Haematol.94, 729?739 (1996). Identifies a role for complement inS. sanguis-induced platelet aggregation. ArticleCASPubMed Google Scholar
Herzberg, M. C. et al. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect. Immun.60, 4809?4818 (1992). ArticleCASPubMedPubMed Central Google Scholar
Beachey, E. H. & Stollerman, G. H. Toxic effects of streptococcal M protein on platelets and polymorphonuclear leukocytes in human blood. J. Exp. Med.134, 351?365 (1971). ArticleCASPubMedPubMed Central Google Scholar
Kurpiewski, G. E., Forrester, L. J., Campbell, B. J. & Barrett, J. T. Platelet aggregation by Streptococcus pyogenes. Infect. Immun.39, 704?708 (1983). ArticleCASPubMedPubMed Central Google Scholar
Herzberg, M. C., Brintzenhofe, K. L. & Clawson, C. C. Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect. Immun.39, 1457?1469 (1983). ArticleCASPubMedPubMed Central Google Scholar
Erickson, P. R. & Herzberg, M. C. A collagen-like immunodeterminant on the surface of Streptococcus sanguis induces platelet aggregation. J. Immunol.138, 3360?3366 (1987). CASPubMed Google Scholar
Erickson, P. R. & Herzberg, M. C. The Streptococcus sanguis platelet aggregation-associated protein. Identification and characterization of the minimal platelet-interactive domain. J. Biol. Chem.268, 1646?1649 (1993). ArticleCASPubMed Google Scholar
Gong, K., Wen, D. Y., Ouyang, T., Rao, A. T. & Herzberg, M. C. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies. Infect. Immun.63, 3628?3633 (1995). ArticleCASPubMedPubMed Central Google Scholar
Herzberg, M. C. et al. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of _Streptococcus sanguis_-induced thrombosis. J. Periodontol.76, 2101?2105 (2005). ArticlePubMed Google Scholar
Sullam, P. M., Jarvis, G. A. & Valone, F. H. Role of immunoglobulin G in platelet aggregation by viridans group streptococci. Infect. Immun.56, 2907?2911 (1988). Early paper showing a role for IgG in streptococci-induced platelet aggregation. ArticleCASPubMedPubMed Central Google Scholar
McNicol, A. et al. A role for immunoglobulin G in donor-specific _Streptococcus sanguis_-induced platelet aggregation. Thromb. Haemost.95, 288?293 (2006). ArticleCASPubMed Google Scholar
Ford, I. et al. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br. J. Haematol.97, 737?746 (1997). ArticleCASPubMed Google Scholar
Ford, I., Douglas, C. W., Preston, F. E., Lawless, A. & Hampton, K. K. Mechanisms of platelet aggregation by Streptococcus sanguis, a causative organism in infective endocarditis. Br. J. Haematol.84, 95?100 (1993). ArticleCASPubMed Google Scholar
Plummer, C. et al. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br. J. Haematol.129, 101?109 (2005). Identifies SrpA as theS. sanguisprotein that interacts with GPIb. ArticleCASPubMed Google Scholar
Sullam, P. M., Valone, F. H. & Mills, J. Mechanisms of platelet aggregation by viridans group streptococci. Infect. Immun.55, 1743?1750 (1987). ArticleCASPubMedPubMed Central Google Scholar
Pampolina, C. & McNicol, A. _Streptococcus sanguis_-induced platelet activation involves two waves of tyrosine phosphorylation mediated by FcgRIIA and aIIbb3. Thromb. Haemost.93, 932?939 (2005). ArticleCASPubMed Google Scholar
Sullam, P. M. et al. Physical proximity and functional interplay of the glycoprotein Ib-IX-V-complex and the Fc receptor Fcγ RIIA on the platelet plasma membrane. J. Biol. Chem.273, 5331?5336 (1998). Identifies an association between GPIb and FcγRIIa on the platelet surface. ArticleCASPubMed Google Scholar
Douglas, C. W., Heath, J., Hampton, K. K. & Preston, F. E. Identity of viridans streptococci isolated from cases of infective endocarditis. J. Med. Microbiol.39, 179?182 (1993). ArticleCASPubMed Google Scholar
Douglas, C. W., Brown, P. R. & Preston, F. E. Platelet aggregation by oral streptococci. FEMS Microbiol. Lett.60, 63?67 (1990). ArticleCASPubMed Google Scholar
Bensing, B. A., Gibson, B. W. & Sullam, P. M. The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J. Bacteriol.186, 638?645 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bensing, B. A., Lopez, J. A. & Sullam, P. M. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect. Immun.72, 6528?6537 (2004). IdentifiesS. gordoniiproteins that interact with GPIb. ArticleCASPubMedPubMed Central Google Scholar
Takahashi, Y., Yajima, A., Cisar, J. O. & Konishi, K. Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect. Immun.72, 3876?3882 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bensing, B. A. & Sullam, P. M. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol. Microbiol.44, 1081?1094 (2002). ArticleCASPubMed Google Scholar
Takamatsu, D., Bensing, B. A. & Sullam, P. M. Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol. Microbiol.52, 189?203 (2004). ArticleCASPubMed Google Scholar
Takamatsu, D., Bensing, B. A. & Sullam, P. M. Four proteins encoded in the _gspB_-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J. Bacteriol.186, 7100?7111 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yajima, A., Takahashi, Y. & Konishi, K. Identification of platelet receptors for the Streptococcus gordonii DL1 sialic acid-binding adhesin. Microbiol. Immunol.49, 795?800 (2005). ArticleCASPubMed Google Scholar
Takamatsu, D. et al. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibα. Mol. Microbiol.58, 380?392 (2005). ArticleCASPubMed Google Scholar
Jakubovics, N. S. et al. Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect. Immun.73, 6629?6638 (2005). ArticleCASPubMedPubMed Central Google Scholar
Takamatsu, D., Bensing, B. A., Prakobphol, A., Fisher, S. J. & Sullam, P. M. Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. Infect. Immun.74, 1933?1940 (2006). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, Y. et al. Contribution of sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by Streptococcus gordonii DL1. Infect. Immun.74, 740?743 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bensing, B. A., Rubens, C. E. & Sullam, P. M. Genetic loci of Streptococcus mitis that mediate binding to human platelets. Infect. Immun.69, 1373?1380 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rasmussen, M., Eden, A. & Bjorck, L. SclA, a novel collagen-like surface protein of Streptococcus pyogenes. Infect. Immun.68, 6370?6377 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zimmerman, T. S. & Spiegelberg, H. L. Pneumococcus-induced serotonin release from human platelets. Identification of the participating plasma/serum factor as immunoglobulin. J. Clin. Invest.56, 828?834 (1975). ArticleCASPubMedPubMed Central Google Scholar
Pietrocola, G. et al. FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood105, 1052?1059 (2005). ArticleCASPubMed Google Scholar
Sjobring, U., Ringdahl, U. & Ruggeri, Z. M. Induction of platelet thrombi by bacteria and antibodies. Blood100, 4470?4477 (2002). Describes the interaction of bacteria and platelets under physiological shear conditions. ArticleCASPubMed Google Scholar
Curtis, M. A., Macey, M., Slaney, J. M. & Howells, G. L. Platelet activation by Protease I of Porphyromonas gingivalis W83. FEMS Microbiol. Lett.110, 167?173 (1993). ArticleCASPubMed Google Scholar
Naito, M. et al. _Porphyromonas gingivalis_-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol. Microbiol.59, 152?167 (2006). ArticleCASPubMed Google Scholar
Danesh, J. et al. Helicobacter pylori infection and early onset myocardial infarction: case-control and sibling pairs study. BMJ319, 1157?1162 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pellicano, R., Fagoonee, S., Rizzetto, M. & Ponzetto, A. Helicobacter pylori and coronary heart disease: which directions for future studies? Crit. Rev. Microbiol.29, 351?359 (2003). ArticlePubMed Google Scholar
Byrne, M. F. et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology124, 1846?1854 (2003). ArticleCASPubMed Google Scholar
Morton, A. R. et al. Campylobacter induced thrombotic thrombocytopenic purpura. Lancet326, 1133?1134 (1985). Article Google Scholar
Sharma, A. et al. Porphyromonas gingivalis platelet aggregation activity: outer membrane vesicles are potent activators of murine platelets. Oral Microbiol. Immunol.15, 393?396 (2000). ArticleCASPubMed Google Scholar
Coburn, J., Leong, J. M. & Erban, J. K. Integrin αIIbβ3 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc. Natl Acad. Sci. USA90, 7059?7063 (1993). ArticleCASPubMedPubMed Central Google Scholar
Defoe, G. & Coburn, J. Delineation of Borrelia burgdorferi p66 sequences required for integrin α(IIb)β(3) recognition. Infect. Immun.69, 3455?3459 (2001). ArticleCASPubMedPubMed Central Google Scholar
Perine, P. L., Parry, E. H., Vukotich, D., Warrell, D. A. & Bryceson, A. D. Bleeding in louse-borne relapsing fever. I. Clinical studies in 37 patients. Trans. R. Soc. Trop. Med. Hyg.65, 776?781 (1971). ArticleCASPubMed Google Scholar
Alugupalli, K. R. et al. Platelet activation by a relapsing fever spirochaete results in enhanced bacterium?platelet interaction via integrin αIIbβ3 activation. Mol. Microbiol.39, 330?340 (2001). ArticleCASPubMed Google Scholar
Alugupalli, K. R. et al. Spirochete?platelet attachment and thrombocytopenia in murine relapsing fever borreliosis. Blood102, 2843?2850 (2003). ArticleCASPubMed Google Scholar
Arvand, M., Bhakdi, S., Dahlback, B. & Preissner, K. T. Staphylococcus aureus α-toxin attack on human platelets promotes assembly of the prothrombinase complex. J. Biol. Chem.265, 14377?14381 (1990). ArticleCASPubMed Google Scholar
Bayer, A. S. et al. Hyperproduction of α-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect. Immun.65, 4652?4660 (1997). ArticleCASPubMedPubMed Central Google Scholar
Palma, M., Shannon, O., Quezada, H. C., Berg, A. & Flock, J. I. Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the α-chain. J. Biol. Chem.276, 31691?31697 (2001). ArticleCASPubMed Google Scholar
Shannon, O. & Flock, J. I. Extracellular fibrinogen binding protein, Efb, from Staphylococcus aureus binds to platelets and inhibits platelet aggregation. Thromb. Haemost.91, 779?789 (2004). ArticleCASPubMed Google Scholar
Tran, U., Boyle, T., Shupp, J. W., Hammamieh, R. & Jett, M. Staphylococcal enterotoxin B initiates protein kinase C translocation and eicosanoid metabolism while inhibiting thrombin-induced aggregation in human platelets. Mol. Cell. Biochem. 21 Mar 2006 (doi:10.1007/s11010-006-9134-6).
Alam, S., Gupta, M. & Bhatnagar, R. Inhibition of platelet aggregation by anthrax edema toxin. Biochem. Biophys. Res. Commun.339, 107?114 (2006). ArticleCASPubMed Google Scholar
Kau, J. H. et al. Antiplatelet activities of anthrax lethal toxin are associated with suppressed p42/44 and p38 mitogen-activated protein kinase pathways in the platelets. J. Infect. Dis.192, 1465?1474 (2005). ArticleCASPubMed Google Scholar
Iwaki, M., Kamachi, K., Heveker, N. & Konda, T. Suppression of platelet aggregation by Bordetella pertussis adenylate cyclase toxin. Infect. Immun.67, 2763?2768 (1999). ArticleCASPubMedPubMed Central Google Scholar
Beck, J., Garcia, R., Heiss, G., Vokonas, P. S. & Offenbacher, S. Periodontal disease and cardiovascular disease. J. Periodontol.67, 1123?1137 (1996). ArticleCASPubMed Google Scholar
Pihlstrom, B. L., Michalowicz, B. S. & Johnson, N. W. Periodontal diseases. Lancet366, 1809?1820 (2005). ArticlePubMed Google Scholar
Spahr, A. et al. Periodontal infections and coronary heart disease: role of periodontal bacteria and importance of total pathogen burden in the Coronary Event and Periodontal Disease (CORODONT) study. Arch. Intern. Med.166, 554?559 (2006). Shows an association between periodontitis, oral pathogen burden and cardiovascular disease. ArticleCASPubMed Google Scholar
Haffajee, A. D. & Socransky, S. S. Microbial etiological agents of destructive periodontal diseases. Periodontol. 20005, 78?111 (1994). ArticleCASPubMed Google Scholar
Potempa, J. & Travis, J. Porphyromonas gingivalis proteinases in periodontitis, a review. Acta. Biochim. Pol.43, 455?465 (1996). ArticleCASPubMed Google Scholar
Potempa, J., Banbula, A. & Travis, J. Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol.24, 153?192 (2000). ArticleCAS Google Scholar
Lourbakos, A. et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood97, 3790?3797 (2001). Identifies a novel mechanism of bacteria-induced platelet activation involving a family of secreted proteases. ArticleCASPubMed Google Scholar
Coutinho, I. R., Berk, R. S. & Mammen, E. Platelet aggregation by a phospholipase C from Pseudomonas aeruginosa. Thromb. Res.51, 495?505 (1988). ArticleCASPubMed Google Scholar
Kalia, N. et al. Studies on the gastric mucosal microcirculation. 2. Helicobacter pylori water soluble extracts induce platelet aggregation in the gastric mucosal microcirculation in vivo. Gut41, 748?752 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ohkuni, H. et al. Purification and partial characterization of a novel human platelet aggregation factor in the extracellular products of Streptococcus mitis, strain Nm-65. FEMS Immunol. Med. Microbiol.17, 121?129 (1997). ArticleCASPubMed Google Scholar
Chia, J. S., Lin, Y. L., Lien, H. T. & Chen, J. Y. Platelet aggregation induced by serotype polysaccharides from Streptococcus mutans. Infect. Immun.72, 2605?2617 (2004). ArticleCASPubMedPubMed Central Google Scholar
Barkalow, K. L. et al. Role for phosphoinositide 3-kinase in FcγRIIA-induced platelet shape change. Am. J. Physiol. Cell Physiol.285, C797?C805 (2003). ArticleCASPubMed Google Scholar
Ragab, A. et al. The tyrosine phosphatase 1B regulates linker for activation of T-cell phosphorylation and platelet aggregation upon FcγRIIa cross-linking. J. Biol. Chem.278, 40923?40932 (2003). ArticleCASPubMed Google Scholar
Cooney, D. S., Phee, H., Jacob, A. & Coggeshall, K. M. Signal transduction by human-restricted Fcγ RIIa involves three distinct cytoplasmic kinase families leading to phagocytosis. J. Immunol.167, 844?854 (2001). ArticleCASPubMed Google Scholar
Usui, Y. et al. Platelet aggregation induced by strains of various species of coagulase-negative staphylococci. Microbiol. Immunol.35, 15?26 (1991). ArticleCASPubMed Google Scholar
Guckian, J. C. Effect of pneumococci on blood clotting, platelets, and polymorphonuclear leukocytes. Infect. Immun.12, 910?918 (1975). ArticleCASPubMedPubMed Central Google Scholar
Usui, Y., Ichiman, Y., Suganuma, M. & Yoshida, K. Platelet aggregation by strains of enterococci. Microbiol. Immunol.35, 933?942 (1991). ArticleCASPubMed Google Scholar
Takii, R., Kadowaki, T., Baba, A., Tsukuba, T. & Yamamoto, K. A functional virulence complex composed of gingipains, adhesins, and lipopolysaccharide shows high affinity to host cells and matrix proteins and escapes recognition by host immune systems. Infect. Immun.73, 883?893 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kiley, P. & Holt, S. C. Characterization of the lipopolysaccharide from Actinobacillus actinomycetemcomitans Y4 and N27. Infect. Immun.30, 862?873 (1980). ArticleCASPubMedPubMed Central Google Scholar
Willcox, M. D., Webb, B. C., Thakur, A. & Harty, D. W. Interactions between Candida species and platelets. J. Med. Microbiol.47, 103?110 (1998). ArticleCASPubMed Google Scholar
Kalvegren, H., Majeed, M. & Bengtsson, T. Chlamydia pneumoniae binds to platelets and triggers P-selectin expression and aggregation: a causal role in cardiovascular disease? Arterioscler. Thromb. Vasc. Biol.23, 1677?1683 (2003). ArticlePubMedCAS Google Scholar