Carbon catabolite repression in bacteria: many ways to make the most out of nutrients (original) (raw)
Monod, J. Recherches sur la Croissance des Cultures Bactériennes. Thesis, Hermann et Cie, Paris (1942). Google Scholar
Magasanik, B. Catabolite repression. Cold Spring Harb. Symp. Quant. Biol.26, 249–256 (1961). ArticleCASPubMed Google Scholar
Liu, M. et al. Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J. Biol. Chem.280, 15921–15927 (2005). ArticleCASPubMed Google Scholar
Blencke, H.-M. et al. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng.5, 133–149 (2003). ArticleCASPubMed Google Scholar
Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W. & Saier, M. H. Jr. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol. Microbiol.39, 1366–1381 (2001). ArticleCASPubMed Google Scholar
Yoshida, K.-I. et al. Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res.29, 6683–6692 (2001). Google Scholar
Bowien, B. & Kusian, B. Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha. Arch. Microbiol.178, 85–93 (2002). ArticleCASPubMed Google Scholar
Nicholson, T. L., Chiu, K. & Stephens, R. S. Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability. Infect. Immun.72, 4286–4289 (2004). ArticleCASPubMedPubMed Central Google Scholar
Halbedel, S. et al. Transcription in Mycoplasma pneumoniae: analysis of the promoters of the ackA and ldh genes. J. Mol. Biol.371, 596–607 (2007). ArticleCASPubMed Google Scholar
Frunzke, J., Engels, V., Hasenbein, S., Gätgens, C. & Bott, M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol.67, 305–322 (2008). ArticleCASPubMed Google Scholar
Wendisch, V. F., de Graaf, A. A., Sahm, H. & Eikmanns, B. J. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol.182, 3088–3096 (2000). ArticleCASPubMedPubMed Central Google Scholar
Van den Bogaard, P. T. C., Kleerebezem, M., Kuipers, O. P. & de Vos, W. M. Control of lactose transport, β-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate- dependent phosphotransferase system sugar. J. Bacteriol.182, 5982–5989 (2000). ArticleCASPubMedPubMed Central Google Scholar
Parche, S. et al. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J. Bacteriol.188, 1260–1265 (2006). ArticleCASPubMedPubMed Central Google Scholar
Collier, D. N., Hager, P. W. & Phibbs, P. V. Jr. Catabolite repression control in the Pseudomonads. Res. Microbiol.147, 551–561 (1996). ArticleCASPubMed Google Scholar
Stülke, J. & Hillen, W. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol.2, 195–201 (1999). ArticlePubMed Google Scholar
Brückner, R. & Titgemeyer, F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett.209, 141–148 (2002). ArticlePubMed Google Scholar
Titgemeyer, F. & Hillen, W. Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek82, 59–71 (2002). ArticleCASPubMed Google Scholar
Kotrba, P., Inui, M. & Yukawa, H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng.92, 502–517 (2001). ArticleCASPubMed Google Scholar
Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol.11, 87–93 (2008). ArticleCASPubMed Google Scholar
Postma, P. W., Lengeler, J. W. & Jacobson, G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev.57, 543–594 (1993). CASPubMedPubMed Central Google Scholar
Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev.70, 939–1031 (2006). A milestone in PTS reviews that discusses and summarizes everything that has been learned about the regulatory functions of the PTS since its discovery in 1964. ArticleCASPubMedPubMed Central Google Scholar
Cases, I., Velázquez, F. & de Lorenzo, V. The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res. Microbiol.158, 666–670 (2007). ArticleCASPubMed Google Scholar
Hogema, B. M. et al. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol. Microbiol.30, 487–498 (1998). The first demonstration that the PEP to pyruvate ratio is a major factor in the control of the phosphorylation state of EIIAGlcand therefore CCR inE. coli. The mechanism explains how the use of non-PTS carbon sources causes CCR. ArticleCASPubMed Google Scholar
Bettenbrock, K. et al. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J. Bacteriol.189, 6891–6900 (2007). ArticleCASPubMedPubMed Central Google Scholar
Feucht, B. U. & Saier, M. H. Jr. Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J. Bacteriol.141, 603–610 (1980). CASPubMedPubMed Central Google Scholar
Harwood, J. P. et al. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. J. Biol. Chem.251, 2462–2468 (1976). CASPubMed Google Scholar
Park, Y.-H., Lee, B. R., Seok, Y.-J. & Peterkofsky, A. In vitro reconstitution of catabolite repression in Escherichia coli. J. Biol. Chem.281, 6448–6454 (2006). ArticleCASPubMed Google Scholar
Malan, T. P., Kolb, A., Buc, H. & McClure, W. R. Mechanism of CRP–cAMP activation of lac operon transcription initiation activation of the P1 promoter. J. Mol. Biol.180, 881–909 (1984). ArticleCASPubMed Google Scholar
Tagami, H. & Aiba, H. A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters. EMBO J.17, 1759–1767 (1998). ArticleCASPubMedPubMed Central Google Scholar
Busby, S. & Ebright, R. H. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol.293, 199–213 (1999). ArticleCASPubMed Google Scholar
Papenfort, K. et al. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved Crp-dependent riboregulator of OmpX synthesis. Mol. Microbiol.68, 890–906 (2008). ArticleCASPubMed Google Scholar
Polayes, D. A., Rice, P. W., Garner, M. M. & Dahlberg, J. E. Cyclic AMP — cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. J. Bacteriol.170, 3110–3114 (1988). ArticleCASPubMedPubMed Central Google Scholar
Inada, T., Kimata, K & Aiba, H. Mechanism responsible for glucose–lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells1, 293–301 (1996). A challenge to the text-book model oflacoperon regulation. In a series of elegant experiments, this study shows how the CCR of thelacoperon is caused by inducer exclusion and not by the cAMP–CRP pathway. ArticleCASPubMed Google Scholar
Hogema, B. M., Arents, J. C., Bader, R. & Postma, P. W. Autoregulation of lactose uptake through the LacY permease by enzyme IIAGlc of the PTS in Escherichia coli K-12. Mol. Microbiol.31, 1825–1833 (1999). ArticleCASPubMed Google Scholar
Kimata, K., Takahashi, H., Inada, T., Postma, P. & Aiba, H. cAMP receptor protein–cAMP plays a crucial role in glucose–lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc. Natl Acad. Sci. USA94, 12914–12919 (1997). ArticleCASPubMedPubMed Central Google Scholar
Henkin, T. M., Grundy, F. J., Nicholson, W. L. & Chambliss, G. H. Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors. Mol. Microbiol.5, 575–584 (1991). The discovery of CcpA inB. subtilis. Used transposon mutagenesis to screen for mutations that lead to the loss of glucose repression of theamyEgene and identified theccpAgene. ArticleCASPubMed Google Scholar
Deutscher, J., Küster, E., Bergstedt, U., Charrier, V. & Hillen, W. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol.15, 1049–1053 (1995). Demonstrates for the first time that HPr(Ser-P) specifically interacts with CcpA in the presence of fructose-1,6-bisphosphate, which suggests that HPr(Ser-P) is a cofactor for CcpA activity. ArticleCASPubMed Google Scholar
Jones, B. E. et al. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J. Biol. Chem.272, 26530–26535 (1997). ArticleCASPubMed Google Scholar
Nessler, S. et al. HPr kinase/phosphorylase, the sensor enzyme of catabolite repression in Gram-positive bacteria: structural aspects of the enzyme and the complex with its protein substrate. J. Bacteriol.185, 4003–4010 (2003). ArticleCASPubMedPubMed Central Google Scholar
Galinier, A. et al. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl Acad. Sci. USA95, 1823–1828 (1998). ArticleCASPubMedPubMed Central Google Scholar
Reizer, J. et al. A novel bacterial protein kinase that controls carbon catabolite repression. Mol. Microbiol.27, 1157–1169 (1998). ArticleCASPubMed Google Scholar
Jault, J.-M. et al. The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J. Biol. Chem.275, 1773–1780 (2000). ArticleCASPubMed Google Scholar
Mijakovic, I. et al. Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc. Natl Acad. Sci. USA99, 13442–13447 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schumacher, M. A. et al. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell118, 731–741 (2004). Reports the structure of the ternary complex of CcpA and HPr(Ser-P) bound to its DNA target. A comparison with the structure of Apo–CcpA reveals the structural changes that occur upon the binding of HPr(Ser-P) in CcpA and that favour DNA-binding of the complex. ArticleCASPubMed Google Scholar
Reizer, J. et al. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. J. Bacteriol.178, 5480–5486 (1996). ArticleCASPubMedPubMed Central Google Scholar
Seidel, G., Diel, M., Fuchsbauer, N. & Hillen, W. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis. FEBS J.272, 2566–2577 (2005). ArticleCASPubMed Google Scholar
Schumacher, M. A., Seidel, G., Hillen, W. & Brennan, R. G. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J. Mol. Biol.368, 1042–1050 (2007). ArticleCASPubMed Google Scholar
Galinier, A. et al. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc. Natl Acad. Sci. USA94, 8439–8444 (1997). ArticleCASPubMedPubMed Central Google Scholar
Martin-Verstraete, I., Deutscher, J. & Galinier, A. Phosphorylation of HPr and Crh by HPrK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J. Bacteriol.181, 2966–2969 (1999). CASPubMedPubMed Central Google Scholar
Galinier, A., Deutscher, J. & Martin-Verstraete, I. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J. Mol. Biol.286, 307–314 (1999). ArticleCASPubMed Google Scholar
Görke, B., Fraysse, L. & Galinier, A. Drastic differences in Crh and HPr synthesis levels reflect their different impacts on catabolite repression in Bacillus subtilis. J. Bacteriol.186, 2992–2995 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schumacher, M. A., Seidel, G., Hillen, W. & Brennan, R. G. Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation. J. Biol. Chem.281, 6793–6800 (2006). ArticleCASPubMed Google Scholar
Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M. & Fujita, Y. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res.28, 1206–1210 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nicholson, W. L. et al. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J. Mol. Biol.198, 609–618 (1987). ArticleCASPubMed Google Scholar
Inacio, J. M. & de Sá-Nogueira, I. _trans_-acting factors and _cis_-elements involved in glucose repression of arabinan degradation in Bacillus subtilis. J. Bacteriol.189, 8371–8376 (2007). ArticleCASPubMedPubMed Central Google Scholar
Choi, S. K. & Saier, M. H. Jr. Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J. Bacteriol.187, 6856–6861 (2005). ArticleCASPubMedPubMed Central Google Scholar
Grundy, F. J., Waters, D. A., Allen, S. H. & Henkin, T. M. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J. Bacteriol.175, 7348–7355 (1993). ArticleCASPubMedPubMed Central Google Scholar
Presecan-Siedel, E. et al. The catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol.181, 6889–6897 (1999). CASPubMedPubMed Central Google Scholar
Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol. Microbiol.45, 543–553 (2002). ArticleCASPubMed Google Scholar
Renna, N. C., Najimudin, N., Winik, L. R. & Zahler, S. A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential production of acetoin. J. Bacteriol.175, 3863–3875 (1993). ArticleCASPubMedPubMed Central Google Scholar
Winkler, H. H. & Wilson, T. H. Inhibition of β-galactoside transport by substrates of the glucose transport system in Escherichia coli. Biochim. Biophys. Acta135, 1030–1051 (1967). ArticleCASPubMed Google Scholar
Nelson, S. O., Wright, J. K. & Postma, P. W. The mechanism of inducer exclusion. Direct interaction between purified IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli. EMBO J.2, 715–720 (1983). Provides the first proof that EIIAGlcelicits inducer inclusion of thelacoperon by direct binding and inhibition of the lactose permease. ArticleCASPubMedPubMed Central Google Scholar
Titgemeyer, F., Mason, R. E. & Saier, M. H. Jr. Regulation of the raffinose permease of Escherichia coli by the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system. J. Bacteriol.176, 543–546 (1994). ArticleCASPubMedPubMed Central Google Scholar
Misko, T. P., Mitchell, W. J., Meadow, N. D. & Roseman, S. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles. J. Biol. Chem.262, 16261–16266 (1987). CASPubMed Google Scholar
Saier, M. H. Jr, Novotny, M. J., Comeau-Fuhrman, D., Osumi, T. & Desai, J. D. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. J. Bacteriol.155, 1351–1357 (1983). CASPubMedPubMed Central Google Scholar
Djordjevic, G. M., Tchieu, J. H. & Saier, M. H. Jr. Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol.183, 3224–3236 (2001). ArticleCASPubMedPubMed Central Google Scholar
Poolman, B., Knol, J., Mollet, B., Nieuwenhuis, B. & Sulter, G. Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc. Natl Acad. Sci. USA92, 778–782 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gunnewijk, M. G. & Poolman, B. Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem.275, 34073–34079 (2000). ArticleCASPubMed Google Scholar
Stülke, J., Arnaud, M., Rapoport, G. & Martin-Verstraete, I. PRD — a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol.28, 865–874 (1998). ArticlePubMed Google Scholar
Tortosa, P. et al. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY. Mol. Microbiol.41, 1381–1393 (2001). ArticleCASPubMed Google Scholar
Krüger, S., Gertz, S. & Hecker, M. Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J. Bacteriol.178, 2637–2644 (1996). Demonstrates that CcpA and the antiterminator LicT provide independent mechanisms of CCR of theB. subtilisβ-glucoside utilization system. ArticlePubMedPubMed Central Google Scholar
Lindner, C., Galinier, A., Hecker, M. & Deutscher, J. Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol. Microbiol.31, 995–1006 (1999). ArticleCASPubMed Google Scholar
Lindner, C., Hecker, M., Le Coq, D. & Deutscher, J. Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon. J. Bacteriol.184, 4819–4828 (2002). ArticleCASPubMedPubMed Central Google Scholar
Görke, B. & Rak, B. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J.18, 3370–3379 (1999). ArticlePubMedPubMed Central Google Scholar
Martin-Verstraete, I. et al. Antagonistic effects of dual PTS catalyzed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol.28, 293–303 (1998). ArticleCASPubMed Google Scholar
Schmalisch, M., Bachem, S. & Stülke, J. Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation: elucidation of the phosphorylation chain leading to inactivation of GlcT. J. Biol. Chem.278, 51108–51115 (2003). ArticleCASPubMed Google Scholar
Zomer, A. L., Buist, G., Larsen, R., Kok, J. & Kuipers, O. P. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J. Bacteriol.189, 1366–1381 (2007). ArticleCASPubMed Google Scholar
Luesink, E. J., van Herpen, R. E., Grossiord, B. P., Kuipers, O. P. & de Vos, W. M. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol.30, 789–798 (1998). ArticleCASPubMed Google Scholar
Abranches, J. et al. CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J. Bacteriol.190, 2340–2349 (2008). ArticleCASPubMedPubMed Central Google Scholar
Doi, R. H. & Kosugi, A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Rev. Microbiol.2, 541–551 (2004). ArticleCAS Google Scholar
Stevenson, D. M. & Weimer, P. J. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Microbiol.71, 4672–4678 (2005). ArticleCASPubMedPubMed Central Google Scholar
Abdou, L. et al. Transcriptional regulation of the Clostridium cellulolyticum “_cip-cel_” operon: a complex mechanism involving a catabolite-responsive element. J. Bacteriol.190, 1499–1506 (2008). ArticleCASPubMed Google Scholar
van Wezel, G. P. et al. A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J. Mol. Microbiol. Biotechnol.12, 67–74 (2007). ArticleCASPubMed Google Scholar
Kwakman, J. H. J. M. & Postma, P. W. Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J. Bacteriol.176, 2694–2698 (1994). ArticleCASPubMedPubMed Central Google Scholar
Angell, S., Lewis, C. G., Buttner, M. J. & Bibb, M. J. Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol. Gen. Genet.244, 135–143 (1994). ArticleCASPubMed Google Scholar
Commichau, F. M. & Stülke, J. Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol. Microbiol.67, 692–702 (2008). ArticleCASPubMed Google Scholar
van Wezel, G. P., White, J., Young, P., Postma, P. W. & Bibb, M. J. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI-galR family of regulatory genes. Mol. Microbiol.23, 537–549 (1997). ArticleCASPubMed Google Scholar
Hindle, Z. & Smith, C. P. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol. Microbiol.12, 737–745 (1994). ArticleCASPubMed Google Scholar
Arndt, A. & Eikmanns, B. J. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J. Bacteriol.189, 7408–7416 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gerstmeir, R., Cramer, A., Dangel, P., Schaffer, S. & Eikmanns, B. J. RamB, a novel transcriptional regulator involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol.186, 2798–2809 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cramer, A., Auchter, M., Frunzke, J., Bott, M. & Eikmanns, B. J. RamB, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to regulation by RamA and RamB. J. Bacteriol.189, 1145–1149 (2007). ArticleCASPubMed Google Scholar
Müller, C., Petruschka, L., Cuypers, H., Burchhardt, G. & Herrmann, H. Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J. Bacteriol.178, 2030–2036 (1996). ArticlePubMedPubMed Central Google Scholar
Moreno, R., Ruiz-Manzano, A., Yuste, L. & Rojo, F. The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol. Microbiol.64, 665–675 (2007). Reveals the molecular mechanism by which Crc exerts CCR inP. putida. Also shows that Crc prevents expression of a regulatory protein by binding and inhibiting the translation of its mRNA. ArticleCASPubMed Google Scholar
Moreno, R. & Rojo, F. The target for the Pseudomonas putida Crc global regulator at the benzoate degradation pathway is the BenR transcriptional regulator. J. Bacteriol.190, 1539–1545 (2008). ArticleCASPubMed Google Scholar
Iyer, R., Baliga, N. S. & Camilli, A. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J. Bacteriol.187, 8340–8349 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shelburne, S. A. et al. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc. Natl Acad. Sci. USA105, 1698–1703 (2008). Detected a direct link between CcpA-mediated CCR and the expression of virulence factors inS. pyogenes. Also shows thatccpAmutants are strongly impaired in virulence. ArticleCASPubMedPubMed Central Google Scholar
Kinkel, T. L. & McIver, K. S. CcpA-mediated repression of streptolysin S expression and virulence. Infect. Immun. 19 May 2008 (doi:10.1128/IAI.00343–08).
Almengor, A. C., Kinkel, T. L., Day, S. J. & McIver, K. S. The catabolite control protein CcpA binds to P_mga_ and influences expression of the virulence regulator Mga in the group A Streptococcus. J. Bacteriol.189, 8405–8416 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hondorp, E. R. & McIver, K. S. The Mga virulence regulon: infection where the grass is greener. Mol. Microbiol.66, 1056–1065 (2007). ArticleCASPubMed Google Scholar
Zeng, L., Wen, Z. T. & Burne, R. A. A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans. Mol. Microbiol.62, 187–200 (2006). ArticleCASPubMed Google Scholar
Mengaud, J. et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol.5, 2273–2283 (1991). ArticleCASPubMed Google Scholar
Milenbachs, A. A., Brown, D. P., Moors, M. & Youngman, P. Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol. Microbiol.23, 1075–1085 (1997). ArticleCASPubMed Google Scholar
Mertins, S. et al. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J. Bacteriol.189, 473–490 (2007). CASPubMed Google Scholar
Dupuy, B. & Sonenshein, A. L. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol.27, 107–120 (1998). ArticleCASPubMed Google Scholar
Varga, J., Stirewalt, V. L. & Melville, S. B. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J. Bacteriol.186, 5221–5229 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mendez, M. et al. Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J. Bacteriol.190, 48–60 (2008). ArticleCASPubMed Google Scholar
Schmoll, T., Ott, M., Oudega, B. & Hacker, J. Use of a wild-type gene fusion to determine the influence of environmental conditions on expression of the S fimbrial adhesin in an Escherichia coli pathogen. J. Bacteriol.172, 5103–5111 (1990). ArticleCASPubMedPubMed Central Google Scholar
Nishikawa, Y., Scotland, S. M., Smith, H. R., Willshaw, G. A. & Rowe, B. Catabolite repression of the adhesion of Vero cytotoxin-producing Escherichia coli of serogroups O157 and O111. Microb. Pathog.18, 223–229 (1995). ArticleCASPubMed Google Scholar
Nagai, S., Yagihashi, T. & Ishihama, A. An avian pathogenic Escherichia coli strain produces a hemolysin, the expression of which is dependent on cyclic AMP receptor protein gene function. Vet. Microbiol.60, 227–238 (1998). ArticleCASPubMed Google Scholar
Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol.2, 414–424 (2004). ArticleCAS Google Scholar
Teplitski, M., Goodier, R. I. & Ahmer, B. M. M. Catabolite repression of the SirA regulatory cascade in Salmonella enterica. Int. J. Med. Microbiol.296, 449–466 (2006). ArticleCASPubMed Google Scholar
Kelly, S. M., Bosecker, B. A. & Curtiss, R. Characterization and protective properties of attenuated mutants of Salmonella choleraesuis. Infect. Immun.60, 4881–4890 (1992). CASPubMedPubMed Central Google Scholar
Petersen, S. & Young, G. M. Essential role for cyclic AMP and its receptor protein in Yersinia enterocolitica virulence. Infect. Immun.70, 3665–3672 (2002). ArticleCASPubMedPubMed Central Google Scholar
Skorupski, K. & Taylor, R. K. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc. Natl Acad. Sci. USA94, 265–270 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kim, T.-J. et al. Direct transcriptional control of the plasminogen activator gene of Yersinia pestis by the cyclic AMP receptor protein. J. Bacteriol.189, 8890–8900 (2007). ArticleCASPubMedPubMed Central Google Scholar
Reverchon, S., Expert, D., Robert-Baudouy, J. & Nasser, W. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J. Bacteriol.179, 3500–3508 (1997). ArticleCASPubMedPubMed Central Google Scholar
De Lencastre, H. et al. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist.5, 163–175 (1999). ArticleCASPubMed Google Scholar
Seidl, K. et al. Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob. Agents Chemother.50, 1183–1194 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bizzini, A., Entenza, J. M. & Moreillon, P. Loss of penicillin tolerance by inactivating the carbon catabolite repression determinant CcpA in Streptococcus gordonii. J. Antimicrob. Chemother.59, 607–615 (2007). ArticleCASPubMed Google Scholar
Ramström, H. et al. Heterocylic bis-cations as starting hits for design of inhibitors of the bifunctional enzyme histidine-containing protein kinase/phosphatase from Bacillus subtilis. J. Med. Chem.47, 2264–2275 (2004). ArticleCASPubMed Google Scholar
Chu, C.-Y. et al. Heterologous protection in pigs induced by plasmid-cured and crp gene-deleted Salmonella choleraesuis live vaccine. Vaccine25, 7031–7040 (2007). ArticleCASPubMed Google Scholar
Curtiss, R. & Kelly, S. M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun.55, 3035–3043 (1987). CASPubMedPubMed Central Google Scholar
Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K. & Reuss, M. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng.79, 53–73 (2002). ArticleCASPubMed Google Scholar
Bettenbrock, K. et al. A quantitative approach to catabolite repression in Escherichia coli. J. Biol. Chem.281, 2578–2584 (2006). A complete mathematical model of CCR of lactose and glycerol utilization inE. coliin which model predictions were experimentally verified. ArticleCASPubMed Google Scholar
Shen-Orr, S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet.31, 64–68 (2002). ArticleCASPubMed Google Scholar
van Tilbeurgh, H. & Declerck, N. Structural insights into the regulation of bacterial signalling proteins containing PRDs. Curr. Opin. Struct. Biol.11, 685–693 (2001). ArticleCASPubMed Google Scholar
Graille, M. et al. Activation of the LicT transcriptional antiterminator involves a domain swing/lock mechanism provoking massive structural changes. J. Biol. Chem.280, 14780–14789 (2005). ArticleCASPubMed Google Scholar