Molecular mechanisms of mechanosensing and their roles in fungal contact sensing (original) (raw)
References
Soll, D. R. et al. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J. Clin Microbiol.29, 1702–1710 (1991). CASPubMedPubMed Central Google Scholar
Emerling, B. M. & Chandel, N. S. Oxygen sensing: getting pumped by sterols. Sci STKE2005, pe30 (2005). PubMed Google Scholar
Sanz, P. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem. Soc. Trans.31, 178–181 (2003). ArticleCAS Google Scholar
Grant, W. D. Life at low water activity. Philos. Trans. R. Soc. Lond. B Biol. Sci.359, 1249–1266; discussion 1266–1267 (2004). ArticleCAS Google Scholar
Stupack, D. G. The biology of integrins. Oncology (Williston Park)21, 6–12 (2007). Google Scholar
Alam, N. et al. The integrin-growth factor receptor duet. J. Cell. Physiol.213, 649–653 (2007). ArticleCAS Google Scholar
Tucker, S. L. & Talbot, N. J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol.39, 385–417 (2001). ArticleCAS Google Scholar
Caracuel-Rios, Z. & Talbot, N. J. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol.10, 339–345 (2007). ArticleCAS Google Scholar
Kumamoto, C. A. & Vinces, M. D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol.59, 113–133 (2005). ArticleCAS Google Scholar
Sexton, A. C. & Howlett, B. J. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot. Cell5, 1941–1949 (2006). ArticleCAS Google Scholar
Kloda, A. et al. Mechanosensitive channel of large conductance. Int. J. Biochem. Cell Biol.40, 164–169 (2008). ArticleCAS Google Scholar
Booth, I. R., Edwards, M. D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of closure? Nature Rev. Microbiol.5, 431–440 (2007). ArticleCAS Google Scholar
Vollrath, M. A., Kwan, K. Y. & Corey, D. P. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci.30, 339–365 (2007). ArticleCAS Google Scholar
Perozo, E. & Rees, D. C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol.13, 432–442 (2003). ArticleCAS Google Scholar
Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science282, 2220–2226 (1998). ArticleCAS Google Scholar
Betanzos, M., Chiang, C. S., Guy, H. R. & Sukharev, S. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nature Struct. Biol.9, 704–710 (2002). ArticleCAS Google Scholar
Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature418, 942–948 (2002). ArticleCAS Google Scholar
Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol.9, 696–703 (2002). Provided an analysis of the effect of the bilayer on the conformation of MscL. ArticleCAS Google Scholar
Zhou, X. L., Stumpf, M. A., Hoch, H. C. & Kung, C. A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science253, 1415–1417 (1991). ArticleCAS Google Scholar
Watts, H. J., Very, A. A., Perera, T. H., Davies, J. M. & Gow, N. A. Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology144, 689–695 (1998). ArticleCAS Google Scholar
Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J. & Wolf, E. D. Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science235, 1659–1662 (1987). Demonstrated thatUromycesgerm tubes differentiate in response to specific features of the surface. ArticleCAS Google Scholar
Brand, A. et al. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol.17, 347–352 (2007). ArticleCAS Google Scholar
Chachisvilis, M., Zhang, Y. L. & Frangos, J. A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl Acad. Sci. USA103, 15463–15468 (2006). Showed thats mechanical forces affect the conformation of a GPCR. Article Google Scholar
Makino, A. et al. G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am. J. Physiol. Cell Physiol.290, 1633–1639 (2006). Article Google Scholar
Zou, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature Cell Biol.6, 499–506 (2004). ArticleCAS Google Scholar
Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into b2-adrenergic receptor function. Science318, 1266–1273 (2007). ArticleCAS Google Scholar
Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science289, 739–745 (2000). ArticleCAS Google Scholar
Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA103, 16123–16128 (2006). ArticleCAS Google Scholar
Yasuda, N. et al. Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep.9, 179–186 (2008). ArticleCAS Google Scholar
DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell11, 2013–2030 (1999). Identified a G protein coupled receptor that promotes contact-dependent appressorium formation. ArticleCAS Google Scholar
Kulkarni, R. D., Thon, M. R., Pan, H. & Dean, R. A. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol.6, R24 (2005). Article Google Scholar
Nishimura, M., Park, G. & Xu, J. R. The G-b subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol.50, 231–243 (2003). ArticleCAS Google Scholar
Liu, S. & Dean, R. A. G protein a subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant Microbe Interact.10, 1075–1086 (1997). ArticleCAS Google Scholar
Liu, H. et al. Rgs1 regulates multiple Ga subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J.26, 690–700 (2007). ArticleCAS Google Scholar
Fang, E. G. & Dean, R. A. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol. Plant Microbe Interact.13, 1214–1227 (2000). ArticleCAS Google Scholar
Miwa, T. et al. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot. Cell3, 919–931 (2004). ArticleCAS Google Scholar
Maidan, M. M. et al. The G protein-coupled receptor Gpr1 and the Ga protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell16, 1971–1986 (2005). ArticleCAS Google Scholar
Sciascia, Q. L., Sullivan, P. A. & Farley, P. C. Deletion of the Candida albicans G-protein-coupled receptor, encoded by orf19.1944 and its allele orf19.9499, produces mutants defective in filamentous growth. Can. J. Microbiol.50, 1081–1085 (2004). ArticleCAS Google Scholar
Lorenz, M. C. et al. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics154, 609–622 (2000). CASPubMedPubMed Central Google Scholar
Lemaire, K., Van de Velde, S., Van Dijck, P. & Thevelein, J. M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol. Cell16, 293–299 (2004). ArticleCAS Google Scholar
Van de Velde, S. & Thevelein, J. M. cAMP-PKA and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in yeast. Eukaryot. Cell7, 286–293 (2008). ArticleCAS Google Scholar
Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol.19, 677–695 (2003). ArticleCAS Google Scholar
Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem.279, 12001–12004 (2004). ArticleCAS Google Scholar
Astrof, N. S., Salas, A., Shimaoka, M., Chen, J. & Springer, T. A. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry45, 15020–15028 (2006). ArticleCAS Google Scholar
Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science305, 1147–1150 (2004). ArticleCAS Google Scholar
Wang, Z. Y. et al. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem. Soc. Trans.33, 384–388 (2005). ArticleCAS Google Scholar
Howard, R. J., Ferrari, M. A., Roach, D. H. & Money, N. P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl Acad. Sci. USA88, 11281–11284 (1991). ArticleCAS Google Scholar
Howard, R. J. & Valent, B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol.50, 491–512 (1996). ArticleCAS Google Scholar
Xiao, J. Z., Watanabe, T., Kamakura, T., Ohshima, A. & Yamaguchi, I. Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant Pathol.44, 227–236 (1994). ArticleCAS Google Scholar
Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature434, 980–986 (2005). CAS Google Scholar
Kumamoto, C. A. & Vinces, M. D. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol.7, 1546–1554 (2005). ArticleCAS Google Scholar
Mitchell, A. P. Dimorphism and virulence in Candida albicans. Curr. Opin. Microbiol.1, 687–692 (1998). ArticleCAS Google Scholar
Brown, D. H. Jr, Giusani, A. D., Chen, X. & Kumamoto, C. A. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol.34, 651–662 (1999). Demonstrated thatC. albicansproduces invasive filaments in response to contact with agar medium. ArticleCAS Google Scholar
Douglas, L. J. Candida biofilms and their role in infection. Trends Microbiol.11, 30–36 (2003). ArticleCAS Google Scholar
Kumamoto, C. A. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl Acad. Sci. USA102, 5576–5581 (2005). ArticleCAS Google Scholar
Liu, H., Styles, C. A. & Fink, G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics144, 967–978 (1996). CASPubMedPubMed Central Google Scholar
Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell68, 1077–1090 (1992). ArticleCAS Google Scholar
Lorenz, M. C., Cutler, N. S. & Heitman, J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell11, 183–199 (2000). ArticleCAS Google Scholar
Levin, D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev.69, 262–291 (2005). ArticleCAS Google Scholar
Lommel, M., Bagnat, M. & Strahl, S. Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol. Cell Biol.24, 46–57 (2004). ArticleCAS Google Scholar
Hutzler, F., Gerstl, R., Lommel, M. & Strahl, S. Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol. Microbiol.68, 1438–1449 (2008). ArticleCAS Google Scholar
Philip, B. & Levin, D. E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell Biol.21, 271–280 (2001). ArticleCAS Google Scholar
Green, R., Lesage, G., Sdicu, A. M., Menard, P. & Bussey, H. A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology149, 2487–2499 (2003). ArticleCAS Google Scholar
Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev.9, 1559–1571 (1995). ArticleCAS Google Scholar