Molecular mechanisms of mechanosensing and their roles in fungal contact sensing (original) (raw)

References

  1. Soll, D. R. et al. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J. Clin Microbiol. 29, 1702–1710 (1991).
    CAS PubMed PubMed Central Google Scholar
  2. Emerling, B. M. & Chandel, N. S. Oxygen sensing: getting pumped by sterols. Sci STKE 2005, pe30 (2005).
    PubMed Google Scholar
  3. Sanz, P. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem. Soc. Trans. 31, 178–181 (2003).
    Article CAS Google Scholar
  4. Grant, W. D. Life at low water activity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1249–1266; discussion 1266–1267 (2004).
    Article CAS Google Scholar
  5. Stupack, D. G. The biology of integrins. Oncology (Williston Park) 21, 6–12 (2007).
    Google Scholar
  6. Alam, N. et al. The integrin-growth factor receptor duet. J. Cell. Physiol. 213, 649–653 (2007).
    Article CAS Google Scholar
  7. Tucker, S. L. & Talbot, N. J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39, 385–417 (2001).
    Article CAS Google Scholar
  8. Caracuel-Rios, Z. & Talbot, N. J. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 10, 339–345 (2007).
    Article CAS Google Scholar
  9. Kumamoto, C. A. & Vinces, M. D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113–133 (2005).
    Article CAS Google Scholar
  10. Sexton, A. C. & Howlett, B. J. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot. Cell 5, 1941–1949 (2006).
    Article CAS Google Scholar
  11. Kloda, A. et al. Mechanosensitive channel of large conductance. Int. J. Biochem. Cell Biol. 40, 164–169 (2008).
    Article CAS Google Scholar
  12. Booth, I. R., Edwards, M. D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of closure? Nature Rev. Microbiol. 5, 431–440 (2007).
    Article CAS Google Scholar
  13. Vollrath, M. A., Kwan, K. Y. & Corey, D. P. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci. 30, 339–365 (2007).
    Article CAS Google Scholar
  14. Perozo, E. & Rees, D. C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13, 432–442 (2003).
    Article CAS Google Scholar
  15. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).
    Article CAS Google Scholar
  16. Betanzos, M., Chiang, C. S., Guy, H. R. & Sukharev, S. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nature Struct. Biol. 9, 704–710 (2002).
    Article CAS Google Scholar
  17. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).
    Article CAS Google Scholar
  18. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002). Provided an analysis of the effect of the bilayer on the conformation of MscL.
    Article CAS Google Scholar
  19. Zhou, X. L., Stumpf, M. A., Hoch, H. C. & Kung, C. A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253, 1415–1417 (1991).
    Article CAS Google Scholar
  20. Watts, H. J., Very, A. A., Perera, T. H., Davies, J. M. & Gow, N. A. Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 144, 689–695 (1998).
    Article CAS Google Scholar
  21. Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J. & Wolf, E. D. Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235, 1659–1662 (1987). Demonstrated that Uromyces germ tubes differentiate in response to specific features of the surface.
    Article CAS Google Scholar
  22. Brand, A. et al. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol. 17, 347–352 (2007).
    Article CAS Google Scholar
  23. Chachisvilis, M., Zhang, Y. L. & Frangos, J. A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl Acad. Sci. USA 103, 15463–15468 (2006). Showed thats mechanical forces affect the conformation of a GPCR.
    Article Google Scholar
  24. Makino, A. et al. G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am. J. Physiol. Cell Physiol. 290, 1633–1639 (2006).
    Article Google Scholar
  25. Zou, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature Cell Biol. 6, 499–506 (2004).
    Article CAS Google Scholar
  26. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into b2-adrenergic receptor function. Science 318, 1266–1273 (2007).
    Article CAS Google Scholar
  27. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).
    Article CAS Google Scholar
  28. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006).
    Article CAS Google Scholar
  29. Yasuda, N. et al. Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep. 9, 179–186 (2008).
    Article CAS Google Scholar
  30. DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030 (1999). Identified a G protein coupled receptor that promotes contact-dependent appressorium formation.
    Article CAS Google Scholar
  31. Kulkarni, R. D., Thon, M. R., Pan, H. & Dean, R. A. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6, R24 (2005).
    Article Google Scholar
  32. Nishimura, M., Park, G. & Xu, J. R. The G-b subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol. 50, 231–243 (2003).
    Article CAS Google Scholar
  33. Liu, S. & Dean, R. A. G protein a subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant Microbe Interact. 10, 1075–1086 (1997).
    Article CAS Google Scholar
  34. Liu, H. et al. Rgs1 regulates multiple Ga subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26, 690–700 (2007).
    Article CAS Google Scholar
  35. Fang, E. G. & Dean, R. A. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol. Plant Microbe Interact. 13, 1214–1227 (2000).
    Article CAS Google Scholar
  36. Miwa, T. et al. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot. Cell 3, 919–931 (2004).
    Article CAS Google Scholar
  37. Maidan, M. M. et al. The G protein-coupled receptor Gpr1 and the Ga protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell 16, 1971–1986 (2005).
    Article CAS Google Scholar
  38. Sciascia, Q. L., Sullivan, P. A. & Farley, P. C. Deletion of the Candida albicans G-protein-coupled receptor, encoded by orf19.1944 and its allele orf19.9499, produces mutants defective in filamentous growth. Can. J. Microbiol. 50, 1081–1085 (2004).
    Article CAS Google Scholar
  39. Lorenz, M. C. et al. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154, 609–622 (2000).
    CAS PubMed PubMed Central Google Scholar
  40. Lemaire, K., Van de Velde, S., Van Dijck, P. & Thevelein, J. M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol. Cell 16, 293–299 (2004).
    Article CAS Google Scholar
  41. Van de Velde, S. & Thevelein, J. M. cAMP-PKA and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in yeast. Eukaryot. Cell 7, 286–293 (2008).
    Article CAS Google Scholar
  42. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).
    Article CAS Google Scholar
  43. Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem. 279, 12001–12004 (2004).
    Article CAS Google Scholar
  44. Astrof, N. S., Salas, A., Shimaoka, M., Chen, J. & Springer, T. A. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry 45, 15020–15028 (2006).
    Article CAS Google Scholar
  45. Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).
    Article CAS Google Scholar
  46. Wang, Z. Y. et al. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem. Soc. Trans. 33, 384–388 (2005).
    Article CAS Google Scholar
  47. Howard, R. J., Ferrari, M. A., Roach, D. H. & Money, N. P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl Acad. Sci. USA 88, 11281–11284 (1991).
    Article CAS Google Scholar
  48. Howard, R. J. & Valent, B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50, 491–512 (1996).
    Article CAS Google Scholar
  49. Xiao, J. Z., Watanabe, T., Kamakura, T., Ohshima, A. & Yamaguchi, I. Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44, 227–236 (1994).
    Article CAS Google Scholar
  50. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).
    CAS Google Scholar
  51. Kumamoto, C. A. & Vinces, M. D. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7, 1546–1554 (2005).
    Article CAS Google Scholar
  52. Mitchell, A. P. Dimorphism and virulence in Candida albicans. Curr. Opin. Microbiol. 1, 687–692 (1998).
    Article CAS Google Scholar
  53. Brown, D. H. Jr, Giusani, A. D., Chen, X. & Kumamoto, C. A. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34, 651–662 (1999). Demonstrated that C. albicans produces invasive filaments in response to contact with agar medium.
    Article CAS Google Scholar
  54. Douglas, L. J. Candida biofilms and their role in infection. Trends Microbiol. 11, 30–36 (2003).
    Article CAS Google Scholar
  55. Kumamoto, C. A. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl Acad. Sci. USA 102, 5576–5581 (2005).
    Article CAS Google Scholar
  56. Liu, H., Styles, C. A. & Fink, G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967–978 (1996).
    CAS PubMed PubMed Central Google Scholar
  57. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090 (1992).
    Article CAS Google Scholar
  58. Lorenz, M. C., Cutler, N. S. & Heitman, J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell 11, 183–199 (2000).
    Article CAS Google Scholar
  59. Levin, D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262–291 (2005).
    Article CAS Google Scholar
  60. Lommel, M., Bagnat, M. & Strahl, S. Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol. Cell Biol. 24, 46–57 (2004).
    Article CAS Google Scholar
  61. Hutzler, F., Gerstl, R., Lommel, M. & Strahl, S. Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol. Microbiol. 68, 1438–1449 (2008).
    Article CAS Google Scholar
  62. Philip, B. & Levin, D. E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell Biol. 21, 271–280 (2001).
    Article CAS Google Scholar
  63. Green, R., Lesage, G., Sdicu, A. M., Menard, P. & Bussey, H. A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology 149, 2487–2499 (2003).
    Article CAS Google Scholar
  64. Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9, 1559–1571 (1995).
    Article CAS Google Scholar

Download references