Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature441, 714–718 (2006). ArticleCASPubMed Google Scholar
Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol.4, 102–112 (2006). ArticleCAS Google Scholar
Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative b diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol.73, 1576–1585 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA104, 11436–11440 (2007). Combined data from hundreds of bacterial communities to show that phylogenetic tree-based measures of diversity can reveal large-scale trends that influence these communities. ArticleCASPubMedPubMed Central Google Scholar
Desnues, C. et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature452, 340–343 (2008). ArticleCASPubMed Google Scholar
Butterfield, N. J., Knoll, A. H. & Swett, K. A bangiophyte red alga from the Proterozoic of arctic Canada. Science250, 104–107 (1990). ArticleCASPubMed Google Scholar
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science307, 1915–1920 (2005). ArticleCASPubMed Google Scholar
Robosky, L. C. et al. Metabonomic identification of two distinct phenotypes in Sprague–Dawley (Crl:CD(SD)) rats. Toxicol. Sci.87, 277–284 (2005). ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). The gut microbiomes of genetically obese mice were shown to have substantially different functional categories of genes compared with those of wild-type litter mates. This study revealed how comparative metagenomics can link host physiological states to the microbiome, as well as the power of testing predictions from such comparative studies with direct experimental tests that involve microbiota transplants into germ-free animals. ArticlePubMed Google Scholar
Rohde, C. M. et al. Metabonomic evaluation of Schaedler altered microflora rats. Chem. Res. Toxicol.10, 1388–1392 (2007). ArticleCAS Google Scholar
Rawls, J. F., Samuel, B. S. & Gordon, J. I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl Acad. Sci. USA101, 4596–4601 (2004). ArticleCASPubMedPubMed Central Google Scholar
Teaford, M. F. & Ungar, P. S. Diet and the evolution of the earliest human ancestors. Proc. Natl Acad. Sci. USA97, 13506–13511 (2000). ArticleCASPubMedPubMed Central Google Scholar
O'Connell, J. F., Hawkes, K. & Blurton Jones, N. G. Grandmothering and the evolution of Homo erectus. J. Hum. Evol.36, 461–485 (1999). ArticleCASPubMed Google Scholar
Ungar, P. S. Evolution of the Hominid Diet: The Known, the Unknown, and the Unknowable 39–55 (Oxford Univ. Press, 2006). Google Scholar
Ungar, P. S., Grine, F. E. & Teaford, M. F. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annu. Rev. Anthropol.35, 209–228 (2006). Article Google Scholar
Yeakel, J. D., Bennett, N. C., Koch, P. L. & Dominy, N. J. The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proc. R. Soc. Lond. B274, 1723–1730 (2007). Article Google Scholar
Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol.36, 199–221 (1995). The expensive-tissue hypothesis advanced in this classic paper proposes that the cost of a large brain is offset in humans by a reduction in gut size and that the evolution of a large brain must have been accompanied by a shift to higher-energy foods. Article Google Scholar
Kehrer-Sawatzki, H. & Cooper, D. N. Understanding the recent evolution of the human genome: insights from human–chimpanzee genome comparisons. Hum. Mutat.28, 99–130 (2007). ArticleCASPubMed Google Scholar
Samuelson, L. C., Wiebauer, K., Snow, C. M. & Meisler, M. H. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol.10, 2513–2520 (1990). ArticleCASPubMedPubMed Central Google Scholar
Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet.39, 1256–1260 (2007). ArticleCASPubMed Google Scholar
Beja-Pereira, A. et al. Gene-culture co-evolution between cattle milk protein genes and human lactase genes. Nature Genet.35, 311–313 (2003). Showed that genetic changes in both humans and cattle are associated with agriculture. This type of study emphasizes how changes in human culture, technology and cookery have shaped our microbial ecology and microbiomes. ArticleCASPubMed Google Scholar
Hollox, E. J. et al. Lactase haplotype diversity in the Old World. Am. J. Hum. Genet.68, 160–172 (2001). ArticleCASPubMed Google Scholar
Falush, D. et al. Traces of human migrations in Helicobacter pylori populations. Science299, 1582–1585 (2003). ArticleCASPubMed Google Scholar
Li, M. et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl Acad. Sci. USA105, 2117–2123 (2008). This important paper provides a crucial link between human physiology and human microbial ecology by showing that the abundance of certain metabolites correlates with the abundance of particular kinds of gut bacteria, rather than with ancestry. ArticleCASPubMedPubMed Central Google Scholar
Suau, A. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol.65, 4799–4807 (1999). CASPubMedPubMed Central Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleCASPubMed Google Scholar
Ley, R. et al. Evolution of mammals and their gut microbes. Science320, 1647–1651 (2008). Provides a 16S rRNA-based survey of the gut bacterial communities in 60 species of mammals. The results show that diet and host phylogeny influence which bacteria live in which hosts. ArticleCASPubMedPubMed Central Google Scholar
Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.71, 8228–8235 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hladik, C. M. & Pasquet, P. The human adaptations to meat eating: a reappraisal. Hum. Evol.17, 199–206 (2002). Article Google Scholar
Collinson, M. E. et al. Fossil evidence of interactions between plants and plant-eating mammals. Philos. Trans. R. Soc. Lond. B333, 197–208 (1991). ArticleCAS Google Scholar
Mackie, R. I. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution 1. Integr. Comp. Biol.42, 319–326 (2002). This helpful review outlines the main carbohydrate-fermentation pathways in the rumen and discusses how digestive-tract anatomy and diet affect rumen function, as mediated by symbiotic microorganisms. ArticlePubMed Google Scholar
Russell, J. B. & Rychlik, J. L. Factors that alter rumen microbial ecology. Science292, 1119–1122 (2001). ArticleCASPubMed Google Scholar
Stevens, C. & Hume, I. Comparative Physiology of the Vertebrate Digestive System (Cambridge Univ. Press, New York, 2004). Google Scholar
Hackstein, J. H. P. & van Alen, T. A. Fecal methanogens and vertebrate evolution. Evolution50, 559–572 (1996). Investigated methanogenesis in a large and phylogenetically diverse assemblage of animals. Methanogenesis was absent from entire clades regardless of diet, which supports the hypothesis that hosts harbour methanogens owing to genetic factors. ArticlePubMed Google Scholar
Dierenfeld, E. S., Hintz, H. F., Robertson, J. B., Van Soest, P. J. & Oftedal, O. T. Utilization of bamboo by the giant panda. J. Nutr.112, 636–641 (1982). ArticleCASPubMed Google Scholar
Hengstmann, U., Chin, K. J., Janssen, P. H. & Liesack, W. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol.65, 5050–5058 (1999). CASPubMedPubMed Central Google Scholar
Egert, M., Wagner, B., Lemke, T., Brune, A. & Friedrich, M. W. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol.69, 6659–6668 (2003). ArticleCASPubMedPubMed Central Google Scholar
Egert, M., Stingl, U., Bruun, L. D., Pommerenke, B., Brune, A. & Friedrich, M. W. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol.71, 4556–4566 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schloss, P. D., Delaibera, I., Handelsman, J. & Raffa, K. F. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ. Entomol.35, 625–629 (2006). Article Google Scholar
Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol.66, 1328–1333 (2000). Correlated the ability of bacteria to grow fast in response to a sudden increase in available energy sources, 'weediness' or r selection with a high copy number of rRNA operons in the genome. ArticleCASPubMedPubMed Central Google Scholar
Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol.186, 2629–2635 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tanner, M., Goebel, B. M., Dojka, M. A. & Pace, N. R. Specific rDNA sequences from diverse environmental settings correlate with experimental contaminants. Appl. Environ. Microbiol.8, 3110–3113 (1998). Google Scholar
Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol.21, 517–523 (2006). ArticlePubMed Google Scholar
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124, 837–848 (2006). ArticleCASPubMed Google Scholar
Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature449, 811–818 (2007). ArticleCASPubMed Google Scholar
Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol.8, 732–740 (2006). ArticlePubMed Google Scholar
Woodcock, S. et al. Neutral assembly of bacterial communities. FEMS Microbiol. Ecol.62, 171–180 (2007). This theoretical paper contributed to our understanding of what would be expected by chance if bacterial communities are assembled according to neutral processes (those without selection) and showed that many microbial communities could fit this model. ArticleCASPubMed Google Scholar
Hubbell, S. P. in The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ Press, 2001). Google Scholar
Hubbell, S. P. Neutral theory and the evolution of ecological equivalence. Ecology87, 1387–1398 (2006). ArticlePubMed Google Scholar
Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe2, 328–339 (2007). ArticleCASPubMed Google Scholar
Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science298, 1424–1427 (2002). ArticleCASPubMed Google Scholar
Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA101, 1981–1986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lanyon, C. V. et al. Murine scent mark microbial communities are genetically determined. FEMS Microbiol. Ecol.59, 576–583 (2007). Detected a genetic influence of the host on microbial communities that alter the smell of urine, a mechanism that provides the host with a range of functions, including territory marking and signalling to potential mates. The study also described a specific effect of the MHC. ArticleCASPubMed Google Scholar
Lombardo, M. P. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav. Ecol. Sociobiol. 1–19 (2008). This study integrates mammalian behaviour with microbial community ecology to propose that communal living allows beneficial microorganisms to be shared.
Lucas, F. S. & Heeb, P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J. Avian Biol.36, 510–516 (2005). Article Google Scholar
Zoetendal, E. G. et al. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. Health Dis.13, 129–134 (2001). Article Google Scholar
Stewart, J. A., Chadwick, V. S. & Murray, A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J. Med. Microbiol.54, 1239–1242 (2005). ArticleCASPubMed Google Scholar
Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol.5, e177 (2007). Culture-independent methods were used on samples from infants with different mothers to show that establishment of gut microbial communities during the postnatal period follows a highly varied course. Dizygotic twins had the most similar pattern of community assembly, suggesting that early environmental exposure is important. ArticleCASPubMedPubMed Central Google Scholar
Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics119, e724–e732 (2007). ArticlePubMed Google Scholar
Frankenfeld, C. L. et al. Familial correlations, segregation analysis, and nongenetic correlates of soy isoflavone-metabolizing phenotypes. Exp. Biol. Med.229, 902–913 (2004). ArticleCAS Google Scholar
Nicholson, J. K., Holmes, E. & Wilson, I. D. Gut microorganisms, mammalian metabolism and personalized health care. Nature Rev. Microbiol.3, 431–438 (2005). ArticleCAS Google Scholar
Borneman, J. in Microbial Diversity and Bioprospecting (ed. Bull, A. T.) 421–428 (ASM, Virginia, 2004). Book Google Scholar
Allison, S. D. & Martiny, J. B. H. Resistance, resilience and redundancy in microbial communities. Proc. Natl Acad. Sci. USA105, 11512–11519 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fuerst, J. A. & Hugenholtz, P. Microorganisms should be high on DNA preservation list. Science290, 1503 (2000). ArticleCASPubMed Google Scholar
Turrini, A., Avio, L., Bedini, S. & Giovannetti, M. In situ collection of endangered arbuscular mychorrhizal fungi in a Mediterranean UNESCO biosphere reserve. Biodivers. Conserv.17, 643–657 (2008). Article Google Scholar
Staley, J. T. Biodiversity: are microbial species threatened? Curr. Opin. Biotech.8, 340–345 (1997). ArticleCASPubMed Google Scholar
Ceballos, G., Ehrlich, P. R., Soberon, J., Salazar, I. & Fay, J. P. Global mammal conservation: what must we manage? Science309, 603–607 (2005). ArticleCASPubMed Google Scholar
Pirages, D. C. Nature, disease, and globalization: an evolutionary perspective. Int. Stud. Rev.9, 616–628 (2007). Article Google Scholar
Beard, A. S. & Blaser, M. J. The ecology of height: the effect of microbial transmission on human height. Perspect. Biol. Med.45, 475–498 (2002). This intriguing integration of human historical, demographical and physiological data was used to propose a connection between the microbiota of a host and host height. ArticlePubMed Google Scholar
DeSantis, T. Z. Jr et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res.34, 394–399 (2006). ArticleCAS Google Scholar
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol.72, 5069–5072 (2006). ArticleCASPubMedPubMed Central Google Scholar
Widmann, J., Hamady, M. & Knight, R. DivergentSet, a tool for picking non-redundant sequences from large sequence collections. Mol. Cell Proteomics5, 1520–1532 (2006). ArticleCASPubMed Google Scholar