A complex journey: transmission of microbial symbionts (original) (raw)
Ewald, P. W. Transmission modes and evolution of the parasitism-mutualism continuum. Ann. N. Y. Acad. Sci.503, 295–306 (1987). ArticleCASPubMed Google Scholar
Yamamura, N. Vertical transmission and evolution of mutualism from parasitism. Theor. Popul. Biol.44, 95–109 (1993). Article Google Scholar
Lipsitsch, M., Siller, S. & Nowak, M. A. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution50, 1729–1741 (1996). Article Google Scholar
Yamamura, N. Evolution of mutualistic symbiosis: a differential equation model. Res. Popul. Ecol.38, 211–218 (1996). Article Google Scholar
Genkai-Kato, M. & Yamamura, N. Evolution of mutualistic symbiosis without vertical transmission. Theor. Popul. Biol.55, 309–323 (1999). ArticleCASPubMed Google Scholar
Sharp, K. H., Eam, B., Faulkner, D. J. & Haygood, M. G. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl. Environ. Microbiol.73, 622–629 (2007). ArticleCASPubMed Google Scholar
Steger, D. et al. Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ. Microbiol.10, 1087–1094 (2008). ArticleCASPubMed Google Scholar
de Bary, A. Die Entstehung der Symbiose (Verlag von Karl, J. Trübner, Strassburg, 1879). Google Scholar
McFall-Ngai, M. J. Unseen forces: the influence of bacteria on animal development. Dev. Biol.242, 1–14 (2002). ArticleCASPubMed Google Scholar
Hurek, T. & Reinhold-Hurek, B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J. Biotechnol.106, 169–178 (2003). ArticleCASPubMed Google Scholar
Gage, D. J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev.68, 280–300 (2004). ArticleCASPubMedPubMed Central Google Scholar
Adams, D. G., Bergman, B., Nierzwicki-Bauer, S. A., Rai, A. N. & Schüßler, A. in The Prokaryotes 331–363 (Springer, New York, 2006). This book chapter provides an excellent overview of plant–cyanobacteria symbioses.
Jones, K. J., Kobayashi, H., Davies, B. W., Taga, M. E. & Walker, G. C. How rhizobial symbionts invade plants: the Sinorhizobium_–_Medicago model. Nature Rev. Microbiol.5, 619–633 (2007). An excellent review of legume–rhizobia symbiosis establishment. ArticleCAS Google Scholar
Usher, K. M., Bergman, B. & Raven, J. A. Exploring cyanobacterial mutualisms. 38, 255–273 (2007).
Adams, D. G. & Duggan, P. S. Cyanobacteria–bryophyte symbioses. J. Exp. Bot.59, 1047–1058 (2008). ArticleCASPubMed Google Scholar
Oldroyd, G. E. D. & Downie, J. A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol.59, 519–546 (2008). ArticleCASPubMed Google Scholar
Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev.71, 295–347 (2007). ArticleCASPubMedPubMed Central Google Scholar
Usher, K. M. The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar. Ecol.29, 178–192 (2008). Article Google Scholar
Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Rev. Microbiol.6, 725–740 (2008). A scrupulous account of marine chemosynthetic symbioses. ArticleCAS Google Scholar
Vrijenhoek, R. C. in Topics in Geobiology. The Vent and Sea Biota. (ed. Kiel, S.) (Springer, Berlin, Germany) (in the press).
Herbert, E. E. & Goodrich-Blair, H. Friend and foe: the two faces of Xenorhabdus nematophila. Nature Rev. Microbiol.5, 634–646 (2007). An outstanding summary of theSteinernema–Xenorhabdussymbiosis. ArticleCAS Google Scholar
Clarke, D. J. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell. Microbiol.10, 2159–2167 (2008). ArticleCASPubMed Google Scholar
Bright, M. & Giere, O. Microbial symbiosis in Annelida. Symbiosis38, 1–45 (2005). Google Scholar
Graf, J., Kikuchi, Y. & Rio, R. V. M. Leeches and their microbiota: naturally simple symbiosis models. Trends Microbiol.14, 365–371 (2006). ArticleCASPubMed Google Scholar
Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Wiley & Sons, New York, 1965). A seminal and exhaustive book on insect symbioses. Google Scholar
Douglas, A. E. Mycetocyte symbiosis in insects. Biol. Rev. Camb. Philos. Soc.64, 409–434 (1989). This is a fine guide to the overwhelming plethora of transmission modes of insect symbionts. ArticleCASPubMed Google Scholar
Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol.59, 155–189 (2005). ArticleCASPubMed Google Scholar
Dale, C. & Moran, N. A. Molecular interactions between bacterial symbionts and their hosts. Cell126, 453–465 (2006). ArticleCASPubMed Google Scholar
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet.42, 165–190 (2008). ArticleCASPubMed Google Scholar
Moya, A., Peretó, J., Gil, R. & Latorre, A. Learning how to live together: genomic insights into prokaryote–animal symbioses. Nature Rev. Genet.9, 218–229 (2008). ArticleCASPubMed Google Scholar
Nyholm, S. V. & McFall-Ngai, M.J. The winnowing: establishing the squid–Vibrio symbiosis. Nature Rev. Microbiol.2, 632–642 (2004). A compelling overview of the establishment of the squid–Vibriospp. symbiosis. ArticleCAS Google Scholar
Visick, K. L. & Ruby, E. G. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol.9, 632–638 (2006). ArticleCASPubMed Google Scholar
Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science292, 1115–1118 (2001). ArticleCASPubMed Google Scholar
Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nature Immunol.5, 569–573 (2004). ArticleCAS Google Scholar
Cheesman, S. E. & Guillemin, K. We know you are in there: conversing with the indigenous gut microbiota. Res. Microbiol.158, 2–9 (2007). This review ponders the parallels between vertebrate microbial mutualisms and the squid–Vibriospp. symbiosis. ArticlePubMed Google Scholar
Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol.6, 776–788 (2008). ArticleCAS Google Scholar
West, N. & Adams, D. G. Phenotypic and genotypic comparison of symbiotic and free-living cyanobacteria from a single field site. Appl. Environ. Microbiol.63, 4479–4484 (1997). CASPubMedPubMed Central Google Scholar
Costa, J. L., Paulsrud, P., Rikkinen, J. & Lindblad, P. Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl. Environ. Microbiol.67, 4393–4396 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol.73, 4308–4316 (2007). The first report of a horizontally transmitted insect symbiont. ArticleCASPubMedPubMed Central Google Scholar
Lee, K.-H. & Ruby, E. G. Detection of the light organ symbiont, Vibrio fischeri, in hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol.58, 942–947 (1992). CASPubMedPubMed Central Google Scholar
Gros, O., Liberge, M., Heddi, A., Khatchadourian, C. & Felbeck, H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testdinum environment). Appl. Environ. Microbiol.69, 6264–6267 (2003). ArticleCASPubMedPubMed Central Google Scholar
Aida, M. et al. Distribution and population of free-living cells related to endosymbiont A harboured in Oligobrachia mashikoi (a siboglinid polychaete) inhabiting Tsukumo Bay. Microbes Environ.23, 81–88 (2008). ArticlePubMed Google Scholar
Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-rhizobium mutualism. Nature425, 78–81 (2003). ArticleCASPubMed Google Scholar
Salerno, J. L. et al. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol. Bull.208, 145–155 (2005). ArticlePubMed Google Scholar
Callsen-Cencic, P. & Flügel, H. J. Larval development and the formation of the gut of Siboglinum poseidoni Flügel & Langhof (Pogonophora, Perviata). Evidence of protostomian affinity. Sarsia80, 73–89 (1995). Article Google Scholar
McCann, J., Stabb, E. V., Milikan, D. S. & Ruby, E. G. Population effects of Vibrio fischeri during infection of Euprymna scolopes. Appl. Environ. Microbiol.69, 5928–5934 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gros, O., Frenkiel, L. & Moueza, M. Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicuaris (Bivalvia: Lucinidae). Invertebr. Reprod. Dev.34, 219–231 (1998). Article Google Scholar
Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature441, 345–348 (2006). A groundbreaking study of the acquisition of vestimentiferan symbionts. ArticleCASPubMed Google Scholar
Bates, J. M. et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol.297, 374–386 (2006). ArticleCASPubMed Google Scholar
Cooper, J. E. Multiple responses of rhizobia to flavonoids during legume root infection. Adv. Bot. Res.41, 1–62 (2004). ArticleCAS Google Scholar
Brencic, A. & Winans, S. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev.69, 155–194 (2005). ArticleCASPubMedPubMed Central Google Scholar
Robidart, J. C. et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ. Microbiol.10, 727–737 (2008). ArticleCASPubMed Google Scholar
Gros, O., Darrasse, A., Durand, P., Frenkiel, L. & Moueza, M. Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl. Environ. Microbiol.62, 2324–2330 (1996). CASPubMedPubMed Central Google Scholar
Ruby, E. G. & Lee, K.-H. The _Vibrio fischeri_-Euprymna scolopes light orga. association: current ecological paradigms. Appl. Environ. Microbiol.64, 805–812 (1998). CASPubMedPubMed Central Google Scholar
Stabb, E. V. & Ruby, E. G. Contribution of pilA to competitive colonization of the squid Euprymna scolopes by Vibrio fischeri. Appl. Environ. Microbiol.69, 820–826 (2003). ArticleCASPubMedPubMed Central Google Scholar
Adin, D. M. et al. Characterization of htrB and msbB mutants of the light organ symbiont Vibrio fischeri. Appl. Environ. Microbiol.74, 633–644 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Fauvart, M. & Michiels, J. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol. Lett.285, 1–9 (2008). ArticleCASPubMed Google Scholar
Aeckersberg, F., Lupp, C., Feliciano, B. & Ruby, E. G. Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J. Bacteriol.183, 6590–6597 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science299, 2074–2076 (2003). ArticleCASPubMed Google Scholar
Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA.105, 11323–11328 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bulgheresi, S., Schabussova, I., Mullin, N. P., Maizels, R. M. & Ott, J. A. A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiont acquisition by a marine nematode. Appl. Environ. Microbiol.72, 2950–2956 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gourdine, J. P. & Smith-Ravin, E. J. Analysis of a cDNA-derived sequence of a novel mannose-binding lectin, codakine, from the tropical clam Codakia orbicularis. Fish Shellfish Immunol.22, 498–509 (2007). ArticleCASPubMed Google Scholar
Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and σ54-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol.57, 1485–1498 (2005). ArticleCASPubMed Google Scholar
Hussa, E. A., O'Shea, T. M., Darnell, C. L., Ruby, E. G. & Visick, K. L. Two-component response regulators of Vibrio fischeri: identification, mutagenesis, and characterization. J. Bacteriol.189, 5825–5838 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature458, 215–218 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hoang, H. H., Becker, A. & Gonzalez, J. E. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J. Bacteriol.186, 5460–5472 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cooper, J. E. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J. Appl. Microbiol.103, 1355–1365 (2007). ArticleCASPubMed Google Scholar
De Hoff, P. L., Brill, L. M. & Hirsch, A. M. Plant lectins: the ties that bind in root symbiosis and plant defense. Mol. Genet. Genomics282, 1–15 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fujishige, N. A. et al. Rhizobium common nod genes are required for biofilm formation. Mol. Microbiol.67, 504–515 (2008). ArticleCASPubMed Google Scholar
Goormachtig, S., Capoen, W. & Holsters, M. Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci.9, 518–522 (2004). ArticleCASPubMed Google Scholar
Bartsev, A. et al. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol.134, 871–879 (2004). ArticleCASPubMedPubMed Central Google Scholar
Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. NO means 'yes' in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell. Microbiol.6, 1139–1151 (2004). ArticleCASPubMed Google Scholar
Moran, N. A. & Dunbar, H. E. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl Acad. Sci. USA103, 12803–12806 (2006). This is the first report of intraspecific symbiont transfer. ArticleCASPubMedPubMed Central Google Scholar
Usher, K. M., Sutton, D. C., Toze, S., Kuo, J. & Fromont, J. Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar. Freshw. Res.56, 125–131 (2005). Article Google Scholar
Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of _Wolbachia_-host interactions. Annu. Rev. Genet.42, 1–25 (2008). A must-read review onWolbachiaspp. transmission and interactions with its host. ArticleCAS Google Scholar
Perkins, S. K. & Peters, G. A. The Azolla-Anabaena symbiosis: endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes. I. Partitioning of the endophytic Anabaena into developing sporocarps. New Phytol.123, 53–64 (1993). Article Google Scholar
Werren, J. H., Skinner, S. W., Huger, A. M. Male-killing bacteria in a parasitic wasp. Science231, 990–992 (1986). ArticleCASPubMed Google Scholar
Huigens, M. E., de Almeida, R. P., Boons, P. A., Luck, R. F. & Stouthamer, R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. Biol. Sci.271, 509–515 (2004). ArticleCASPubMedPubMed Central Google Scholar
Brennan, L. J., Keddie, B. A., Braig, H. R. & Harris, H. L. The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS ONE3, e2083 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Frank, S. A. Host control of symbiont transmission: the separation of symbionts into germ and soma. Am. Nat.148, 1113–1124 (1996). Article Google Scholar
Dale, C., Plague, G. R., Wang, B., Ochman, H. & Moran, N. A. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl Acad. Sci. USA99, 12397–12402 (2002). ArticleCASPubMedPubMed Central Google Scholar
Giere, O. & Langheld, C. Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol.93, 641–650 (1987). Article Google Scholar
Hirose, E. Plant rake and algal pouch of the larvae in the tropical ascidian Diplosoma similis: an adaptation for vertical transmission of photosynthetic symbionts Prochloron sp. Zool. Sci.17, 233–240 (2000). An exquisite morphological study of ascidian adaptations to symbiont vertical transmission. Article Google Scholar
Hirose, E. & Fukuda, T. Vertical transmission of photosymbionts in the colonial ascidian Didemnum molle: the larval tunic prevents symbionts from attaching to the anterior part of larvae. Zool. Sci.23, 669–674 (2006). Article Google Scholar
Hirose, E., Adachi, R. & Kuze, K. Sexual reproduction of the _Prochloron_-bearing ascidians, Trididemnum cyclops and Lissoclinum bistratum, in subtropical waters: seasonality and vertical transmission of photosymbionts. J. Mar. Biolog. Assoc. UK86, 175–179 (2006). Article Google Scholar
Hirose, E. & Hirose, M. Morphological process of vertical transmission of photosymbionts in the colonial ascidian Trididemnum miniatum Kott, 1977. Mar. Biol.150, 359–367 (2007). Article Google Scholar
Ereskovsky, A. V. & Boury-Esnault, N. Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. J. Nat. Hist.36, 1761–1775 (2002). Article Google Scholar
Kaye, H. R. Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial symbionts. Invertebr. Reprod. Dev.19, 13–24 (1991). Article Google Scholar
Ereskovsky, A. V., Gonobobleva, E. & Vishnyakov, A. Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston (Porifera, Demospongiae, Halisarcida). Mar. Biol.146, 869–875 (2005). Article Google Scholar
Sharp, K. H., Davidson, S. K. & Haygood, M. G. Localization of 'Candidatus Endobugula sertula' and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J.1, 693–702 (2007). A first-rate description of the transmission of a bryozoan symbiont. ArticlePubMed Google Scholar
Cary, S. C. Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi. Mol. Marine Biol. Biotechnol.3, 121–130 (1994). CAS Google Scholar
Cary, S. C. & Giovannoni, S. J. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. Natl Acad. Sci. USA90, 5695–5699 (1993). ArticleCASPubMedPubMed Central Google Scholar
Endow, K. & Ohta, S. Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar. Ecol. Prog. Ser.64, 309–311 (1990). Article Google Scholar
Eberle, M. W. & McLean, D. L. Initiation and orientation of the symbiote migration in the human body louse Pediculus humanus L. J. Insect Physiol.28, 417–422 (1982). Article Google Scholar
Eberle, M. W. & McLean, D. L. Observation of symbiote migration in human body lice with scanning and transmission electron microscopy. Can. J. Microbiol.29, 755–762 (1983). This paper provides some marvellous micrographs of the louse symbionts on their way to the ovaries. ArticleCASPubMed Google Scholar
Sasaki-Fukatsu, K. et al. Symbiotic bacteria associated with stomach discs of human lice. Appl. Environ. Microbiol.72, 7349–7352 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ciche, T. A., Kim, K.-S. & Kaufmann-Daszczuk, B. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl. Environ. Microbiol.74, 2275–2287 (2008). An accurate description of a peculiar and unexpected vertical transmission route. ArticleCASPubMedPubMed Central Google Scholar
Brugirard-Ricaud, K. et al. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell. Microbiol.7, 363–371 (2005). ArticleCASPubMed Google Scholar
Martens, E. C. & Goodrich-Blair, H. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cell. Microbiol.7, 1723–1735 (2005). ArticleCASPubMed Google Scholar
Rio, R. V., Maltz, M., McCormick, B., Reiss, A. & Graf, J. Symbiont succession during the embryonic development of the european medicinal leech, Hirudo verbana. Appl. Environ. Microbiol.5, 6890–6895 (2009). ArticleCAS Google Scholar
Büsing, K.-H., Döll, W. & Freytag, K. Die Bakterienflora der medizinischen medizinischen Blutegel. Arch. Mikrobiol.19, 52–86 (1953). ArticlePubMed Google Scholar
Silver, A. C. et al. Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc. Natl Acad. Sci. USA104, 9481–9486 (2007). ArticleCASPubMedPubMed Central Google Scholar
Usher, K. M., Kuo, J., Fromont, J. & Sutton, D. C. Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia461, 15–23 (2001). Article Google Scholar
Gottlieb, Y. et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J.22, 2591–2599 (2008). ArticleCASPubMed Google Scholar
Miura, T. et al. A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J. Exp. Zool.295B, 59–81 (2003). Article Google Scholar
Mira, A. & Moran, N. A. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb. Ecol.44, 137–143 (2002). ArticleCASPubMed Google Scholar
Cowles, C. E. & Goodrich-Blair, H. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes. J. Bacteriol.190, 4121–4128 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chandra, H., Khandelwal, P., Khattrl, A. & Banerjee, N. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Environ. Microbiol.10, 1285–1295 (2008). ArticleCASPubMed Google Scholar
Davidson, S. K. & Stahl, D. A. Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J.2, 510–518 (2008). This is a high quality account of the symbiont journey to the nephridia of developing earthworms. ArticlePubMed Google Scholar
Gustafson, R. G. & Reid, R. G. B. Larval and post-larval morphogenesis in the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar. Biol.97, 373–387 (1988). Article Google Scholar
Gustafson, R. G. & Reid, R. G. B. Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar. Biol.97, 389–401 (1988). Article Google Scholar
Funk, D. J., Wernegreen, J. J. & Moran, N. A. Intraspecific variation in symbiont genomes: bottlenecks and the Aphid-Buchnera association. Genetics157, 477–489 (2001). CASPubMedPubMed Central Google Scholar
Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature407, 81–86 (2000). ArticleCASPubMed Google Scholar
Rio, R. V. M., Lefevre, C., Heddi, A. & Aksoy, S. Comparative genomics of insect-symbiotic bacteria: influence of host environment on microbial genome composition. Appl. Environ. Microbiol.69, 6825–6832 (2003). ArticleCASPubMedPubMed Central Google Scholar
Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature443, 950–955 (2006). ArticleCASPubMed Google Scholar
Charles, H., Heddi, A., Guillaud, J., Nardon, C. & Nardon, P. A molecular aspect of symbiotic interactions between the weevil Sitophilus oryzae and its endosymbiotic bacteria: over-expression of a chaperonin. Biochem. Biophys. Res.239, 769–774 (1997). ArticleCAS Google Scholar
Plague, G. R., Dunbar, H. E., Tran, P. L. & Moran, N. A. Extensive proliferation of transposable elements in heritable bacterial symbionts. J. Bacteriol.190, 777–779 (2008). CASPubMed Google Scholar
Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet.17, 589–596 (2001). ArticleCASPubMed Google Scholar
Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev.14, 627–633 (2004). ArticleCASPubMed Google Scholar
Gros, O., Liberge, M. & Felbeck, H. Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar. Biol.142, 57–66 (2003). Article Google Scholar
Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl. Environ. Microbiol.71, 4035–4043 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nishiguchi, M. K., Ruby, E. G. & McFall-Ngai, M. J. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-Vibrio symbioses. Appl. Environ. Microbiol.64, 3209–3213 (1998). CASPubMedPubMed Central Google Scholar
Won, Y. - J., Jones, W. J. & Vrijenhoek, R. C. Absence of cospeciation between deep-sea mytilids and their thiotrophic endosymbionts. J. Shellfish Res.27, 129–138 (2008). Article Google Scholar
Goffredi, S. K., Hurtado, L. A., Hallam, S. & Vrijenhoek, R. C. Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “_pacifica/lepta_” species complex. Mar. Biol.142, 311–320 (2003). Article Google Scholar
Hurtado, L. A., Mateos, M., Lutz, R. A. & Vrijenhoek, R. C. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl. Environ. Microbiol.69, 2058–2064 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stewart, F. J., Young, C. R. & Cavanaugh, C. M. Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol. Biol. Evol.25, 673–687 (2008). ArticleCASPubMed Google Scholar
Allen, J. M., Reed, D. L., Perotti, M. A. & Braig, H. R. Evolutionary relationships of “Candidatus Riesia spp.”, endosymbiotic Enterobacteriaceae living within hematophagous primate lice. Appl. Environ. Microbiol.73, 1659–1664 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schramm, A. et al. _Acidovorax_-like symbionts in the nephridia of earthworms. Environ. Microbiol.5, 804–809 (2003). ArticleCASPubMed Google Scholar
Shoemaker, D. D. et al. The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc. R. Soc. Lond., B, Biol. Sci.269, 2257–2267 (2002). Article Google Scholar
Reuter, M. & Keller, L. High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. Mol. Biol. Evol.20, 748–753 (2003). ArticleCASPubMed Google Scholar
Münchhoff, J. et al. Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environ. Microbiol.9, 890–899 (2007). ArticlePubMedCAS Google Scholar
Blazejak, A., Kuever, J., Erseus, C., Amann, R. & Dubilier, N. Phylogeny of 16S rRNA, ribulose 1, 5-bisphosphate carboxylase/oxygenase, and adenosine 5′-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (Oligochaeta) from Bermuda and the Bahamas. Appl. Environ. Microbiol.72, 5527–5536 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lim-Fong, G. E., Regali, L. A. & Haygood, M. G. Evolutionary relationships of “Candidatus Endobugula” bacterial symbionts and their Bugula bryozoan hosts. Appl. Environ. Microbiol.72, 3605–3609 (2008). ArticleCAS Google Scholar
Krueger, D. M., Gustafson, R. G. & Cavanaugh, C. M. Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol. Bull.190, 195–202 (1996). ArticleCASPubMed Google Scholar
Schmitt, S., Angermeier, H., Schiller, R., Lindquist, N. & Hentschel, U. Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl. Environ. Microbiol.74, 7694–7708 (2008). ArticleCASPubMedPubMed Central Google Scholar
Davidson, S. K. & Stahl, D. A. Transmission of nephridial bacteria of the earthworm Eisenia fetida. Appl. Environ. Microbiol.72, 769–775 (2006). ArticleCASPubMedPubMed Central Google Scholar
Perotti, M. A., Allen, J. M., Reed, D. L. & Braig, H. R. Host-symbiont interactions of the primary endosymbiont of human head and body lice. FASEB J.21, 1058–1066 (2007). ArticleCASPubMed Google Scholar
Nardon, P. Contribution à l'ètude des symbiotes ovaries de Sitophilus sasakii: localisation, histochimie et ultrastructure chez la femelle adults. C. R. Acad. Sci. III, Sci.272, 2975–2978 (1971). Google Scholar
Meeks, J. C. et al. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosyn. Res.70, 85–106 (2001). ArticleCAS Google Scholar