Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution (original) (raw)
References
Koonin, E. V. & Dolja, V. V. A virocentric perspective on the evolution of life. Curr. Opin. Virol.3, 546–557 (2013). PubMedPubMed Central Google Scholar
Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsid-less selfish elements. Microbiol. Mol. Biol. Rev.78, 278–303 (2014). CASPubMedPubMed Central Google Scholar
Krupovic, M., Prangishvili, D., Hendrix, R. W. & Bamford, D. H. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev.75, 610–635 (2011). PubMedPubMed Central Google Scholar
Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient Virus World and evolution of cells. Biol. Direct1, 29 (2006). PubMedPubMed Central Google Scholar
Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science303, 1626–1632 (2004). CASPubMed Google Scholar
Goodier, J. L. & Kazazian, H. H. Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell135, 23–35 (2008). CASPubMed Google Scholar
Iyer, L. M., Aravind, L. & Koonin, E. V. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol.75, 11720–11734 (2001). CASPubMedPubMed Central Google Scholar
Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res.117, 156–184 (2006). CASPubMed Google Scholar
Koonin, E. V. & Yutin, N. Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology53, 284–292 (2010). PubMedPubMed Central Google Scholar
Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol.158, 2517–2521 (2013). PubMedPubMed Central Google Scholar
La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature455, 100–104 (2008). CASPubMed Google Scholar
Claverie, J. M. & Abergel, C. Mimivirus and its virophage. Annu. Rev. Genet.43, 49–66 (2009). CASPubMed Google Scholar
Desnues, C., Boyer, M. & Raoult, D. Sputnik, a virophage infecting the viral domain of life. Adv. Virus Res.82, 63–89 (2012). CASPubMed Google Scholar
Krupovic, M. & Cvirkaite-Krupovic, V. Virophages or satellite viruses? Nature Rev. Microbiol.9, 762–763 (2011). CAS Google Scholar
Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science332, 231–234 (2011). CASPubMed Google Scholar
Yutin, N., Raoult, D. & Koonin, E. V. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol. J.10, 158 (2013). CASPubMedPubMed Central Google Scholar
Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct9, 6 (2014). PubMedPubMed Central Google Scholar
Kapitonov, V. V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA103, 4540–4545 (2006). CASPubMed Google Scholar
Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene390, 3–17 (2007). CASPubMed Google Scholar
Jurka, J., Kapitonov, V. V., Kohany, O. & Jurka, M. V. Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genom. Hum. Genet.8, 241–259 (2007). CAS Google Scholar
Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell16, 673–685 (2004). CASPubMed Google Scholar
Krupovic, M. & Bamford, D. H. Virus evolution: how far does the double β-barrel viral lineage extend? Nature Rev. Microbiol.6, 941–948 (2008). CAS Google Scholar
Krupovic, M. & Bamford, D. H. Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr. Opin. Virol.1, 118–124 (2011). CASPubMed Google Scholar
Abrescia, N. G. et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature432, 68–74 (2004). CASPubMed Google Scholar
Abrescia, N. G. et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol. Cell31, 749–761 (2008). CASPubMed Google Scholar
Veesler, D. et al. Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc. Natl Acad. Sci. USA110, 5504–5509 (2013). CASPubMed Google Scholar
Zhang, X. et al. Structure of Sputnik, a virophage, at 3.5-Å resolution. Proc. Natl Acad. Sci. USA109, 18431–18436 (2012). CASPubMed Google Scholar
Zubieta, C., Schoehn, G., Chroboczek, J. & Cusack, S. The structure of the human adenovirus 2 penton. Mol. Cell17, 121–135 (2005). CASPubMed Google Scholar
Xiao, C. & Rossmann, M. G. Structures of giant icosahedral eukaryotic dsDNA viruses. Curr. Opin. Virol.1, 101–109 (2011). CASPubMedPubMed Central Google Scholar
Dunigan, D. D. et al. Paramecium bursaria Chlorella virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J. Virol.86, 8821–8834 (2012). CASPubMedPubMed Central Google Scholar
Barrett, A. J. & Rawlings, N. D. Evolutionary lines of cysteine peptidases. Biol. Chem.382, 727–733 (2001). CASPubMed Google Scholar
Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J.6, 223 (2009). PubMedPubMed Central Google Scholar
Andres, G., Alejo, A., Simon-Mateo, C. & Salas, M. L. African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J. Biol. Chem.276, 780–787 (2001). CASPubMed Google Scholar
Byrd, C. M. & Hruby, D. E. A conditional-lethal vaccinia virus mutant demonstrates that the I7L gene product is required for virion morphogenesis. Virol. J.2, 4 (2005). PubMedPubMed Central Google Scholar
Gillis, A. & Mahillon, J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses6, 2623–2672 (2014). PubMedPubMed Central Google Scholar
Strömsten, N. J., Benson, S. D., Burnett, R. M., Bamford, D. H. & Bamford, J. K. The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J. Bacteriol.185, 6985–6989 (2003). PubMedPubMed Central Google Scholar
Bao, W., Kapitonov, V. V. & Jurka, J. Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons. Mob DNA1, 3 (2010). PubMedPubMed Central Google Scholar
Iyer, L. M., Makarova, K. S., Koonin, E. V. & Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res.32, 5260–5279 (2004). CASPubMedPubMed Central Google Scholar
Strömsten, N. J., Bamford, D. H. & Bamford, J. K. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J. Mol. Biol.348, 617–629 (2005). PubMed Google Scholar
Cassetti, M. C., Merchlinsky, M., Wolffe, E. J., Weisberg, A. S. & Moss, B. DNA packaging mutant: repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J. Virol.72, 5769–5780 (1998). CASPubMedPubMed Central Google Scholar
Burroughs, A. M., Iyer, L. M. & Aravind, L. Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn.3, 48–65 (2007). CASPubMed Google Scholar
Salas, M. Protein-priming of DNA replication. Annu. Rev. Biochem.60, 39–71 (1991). CASPubMed Google Scholar
Klassen, R. & Meinhardt, F. Linear protein-primed replicating plasmids in eukaryotic microbes. Microbiol. Monogr.7, 188–216 (2007). Google Scholar
Krupovic, M. & Koonin, E. V. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci. Rep.4, 5347 (2014). PubMedPubMed Central Google Scholar
Handa, H. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion8, 15–25 (2008). CASPubMed Google Scholar
Filée, J. & Forterre, P. Viral proteins functioning in organelles: a cryptic origin? Trends Microbiol.13, 510–513 (2005). PubMed Google Scholar
Shutt, T. E. & Gray, M. W. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet.22, 90–95 (2006). CASPubMed Google Scholar
Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell98, 825–833 (1999). CASPubMed Google Scholar
Davison, A. J., Benko, M. & Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol.84, 2895–2908 (2003). CASPubMed Google Scholar
Merckel, M. C., Huiskonen, J. T., Bamford, D. H., Goldman, A. & Tuma, R. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Mol. Cell18, 161–170 (2005). CASPubMed Google Scholar
Hu, Z. Y., Li, G. H., Li, G. T., Yao, Q. & Chen, K. P. Bombyx mori bidensovirus: the type species of the new genus Bidensovirus in the new family Bidnaviridae. Chin. Sci. Bull.58, 4528–4532 (2013). CAS Google Scholar
Krupovic, M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr. Opin. Virol.3, 578–586 (2013). CASPubMed Google Scholar
Iyer, L. M., Abhiman, S. & Aravind, L. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. Biol. Direct3, 39 (2008). PubMedPubMed Central Google Scholar
Jeske, S., Meinhardt, F. & Klassen, R. in Progress in Botany (eds Esser, K., Lüttge, U., Beyschlag, W. & Murata, J.) 98–129 (Springer, 2007). Google Scholar
Iyer, L. M., Koonin, E. V. & Aravind, L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol.3, 1 (2003). PubMedPubMed Central Google Scholar
Wilson, D. W. & Meacock, P. A. Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res.16, 8097–8112 (1988). CASPubMedPubMed Central Google Scholar
Deng, L. & Shuman, S. Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev.12, 538–546 (1998). CASPubMedPubMed Central Google Scholar
Larsen, M., Gunge, N. & Meinhardt, F. Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid40, 243–246 (1998). CASPubMed Google Scholar
Kyrieleis, O. J., Chang, J., de la Pena, M., Shuman, S. & Cusack, S. Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure22, 452–465 (2014). CASPubMedPubMed Central Google Scholar
Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nature Rev. Mol. Cell Biol.3, 619–625 (2002). CAS Google Scholar
Shuman, S. The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. Cold Spring Harb. Symp. Quant. Biol.66, 301–312 (2001). CASPubMed Google Scholar
Tiggemann, M., Jeske, S., Larsen, M. & Meinhardt, F. Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast18, 815–825 (2001). CASPubMed Google Scholar
Yutin, N. & Koonin, E. V. Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virol. J.9, 161 (2012). CASPubMedPubMed Central Google Scholar
Sandmeyer, S. B. & Menees, T. M. Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr. Top. Microbiol. Immunol.214, 261–296 (1996). CASPubMed Google Scholar
Yutin, N., Wolf, Y. I. & Koonin, E. V. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology466–467, 38–52 (2014). PubMed Google Scholar
Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA111, 4274–4279 (2014). CASPubMed Google Scholar
Rixon, F. J. & Schmid, M. F. Structural similarities in DNA packaging and delivery apparatuses in Herpesvirus and dsDNA bacteriophages. Curr. Opin. Virol.5, 105–110 (2014). CASPubMed Google Scholar
Philippe, N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science341, 281–286 (2013). CASPubMed Google Scholar
Keeling, P. J. et al. The tree of eukaryotes. Trends Ecol. Evol.20, 670–676 (2005). PubMed Google Scholar
Desnues, C. et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc. Natl Acad. Sci. USA109, 18078–18083 (2012). CASPubMed Google Scholar
Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA99, 14758–14763 (2002). CASPubMed Google Scholar
Rux, J. J., Kuser, P. R. & Burnett, R. M. Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J. Virol.77, 9553–9566 (2003). CASPubMedPubMed Central Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol.59, 307–321 (2010). CASPubMed Google Scholar
Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol.12, 36 (2014). PubMedPubMed Central Google Scholar