Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution (original) (raw)

References

  1. Koonin, E. V. & Dolja, V. V. A virocentric perspective on the evolution of life. Curr. Opin. Virol. 3, 546–557 (2013).
    PubMed PubMed Central Google Scholar
  2. Krupovic, M. & Bamford, D. H. Order to the viral universe. J. Virol. 84, 12476–12479 (2010).
    CAS PubMed PubMed Central Google Scholar
  3. Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsid-less selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).
    CAS PubMed PubMed Central Google Scholar
  4. Krupovic, M., Prangishvili, D., Hendrix, R. W. & Bamford, D. H. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75, 610–635 (2011).
    PubMed PubMed Central Google Scholar
  5. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient Virus World and evolution of cells. Biol. Direct 1, 29 (2006).
    PubMed PubMed Central Google Scholar
  6. Holmes, E. C. What does virus evolution tell us about virus origins? J. Virol. 85, 5247–5251 (2011).
    CAS PubMed PubMed Central Google Scholar
  7. Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).
    CAS PubMed Google Scholar
  8. Goodier, J. L. & Kazazian, H. H. Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135, 23–35 (2008).
    CAS PubMed Google Scholar
  9. Iyer, L. M., Aravind, L. & Koonin, E. V. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75, 11720–11734 (2001).
    CAS PubMed PubMed Central Google Scholar
  10. Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117, 156–184 (2006).
    CAS PubMed Google Scholar
  11. Koonin, E. V. & Yutin, N. Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology 53, 284–292 (2010).
    PubMed PubMed Central Google Scholar
  12. Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).
    PubMed PubMed Central Google Scholar
  13. La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008).
    CAS PubMed Google Scholar
  14. Claverie, J. M. & Abergel, C. Mimivirus and its virophage. Annu. Rev. Genet. 43, 49–66 (2009).
    CAS PubMed Google Scholar
  15. Desnues, C., Boyer, M. & Raoult, D. Sputnik, a virophage infecting the viral domain of life. Adv. Virus Res. 82, 63–89 (2012).
    CAS PubMed Google Scholar
  16. Krupovic, M. & Cvirkaite-Krupovic, V. Virophages or satellite viruses? Nature Rev. Microbiol. 9, 762–763 (2011).
    CAS Google Scholar
  17. Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science 332, 231–234 (2011).
    CAS PubMed Google Scholar
  18. Yutin, N., Raoult, D. & Koonin, E. V. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol. J. 10, 158 (2013).
    CAS PubMed PubMed Central Google Scholar
  19. Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014).
    PubMed PubMed Central Google Scholar
  20. Kapitonov, V. V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA 103, 4540–4545 (2006).
    CAS PubMed Google Scholar
  21. Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007).
    CAS PubMed Google Scholar
  22. Jurka, J., Kapitonov, V. V., Kohany, O. & Jurka, M. V. Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genom. Hum. Genet. 8, 241–259 (2007).
    CAS Google Scholar
  23. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).
    CAS PubMed Google Scholar
  24. Krupovic, M. & Bamford, D. H. Virus evolution: how far does the double β-barrel viral lineage extend? Nature Rev. Microbiol. 6, 941–948 (2008).
    CAS Google Scholar
  25. Krupovic, M. & Bamford, D. H. Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr. Opin. Virol. 1, 118–124 (2011).
    CAS PubMed Google Scholar
  26. Abrescia, N. G. et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 68–74 (2004).
    CAS PubMed Google Scholar
  27. Abrescia, N. G. et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol. Cell 31, 749–761 (2008).
    CAS PubMed Google Scholar
  28. Veesler, D. et al. Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc. Natl Acad. Sci. USA 110, 5504–5509 (2013).
    CAS PubMed Google Scholar
  29. Zhang, X. et al. Structure of Sputnik, a virophage, at 3.5-Å resolution. Proc. Natl Acad. Sci. USA 109, 18431–18436 (2012).
    CAS PubMed Google Scholar
  30. Zubieta, C., Schoehn, G., Chroboczek, J. & Cusack, S. The structure of the human adenovirus 2 penton. Mol. Cell 17, 121–135 (2005).
    CAS PubMed Google Scholar
  31. Xiao, C. & Rossmann, M. G. Structures of giant icosahedral eukaryotic dsDNA viruses. Curr. Opin. Virol. 1, 101–109 (2011).
    CAS PubMed PubMed Central Google Scholar
  32. Dunigan, D. D. et al. Paramecium bursaria Chlorella virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J. Virol. 86, 8821–8834 (2012).
    CAS PubMed PubMed Central Google Scholar
  33. Barrett, A. J. & Rawlings, N. D. Evolutionary lines of cysteine peptidases. Biol. Chem. 382, 727–733 (2001).
    CAS PubMed Google Scholar
  34. San Martín, C. Latest insights on adenovirus structure and assembly. Viruses 4, 847–877 (2012).
    PubMed PubMed Central Google Scholar
  35. Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).
    PubMed PubMed Central Google Scholar
  36. Andres, G., Alejo, A., Simon-Mateo, C. & Salas, M. L. African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J. Biol. Chem. 276, 780–787 (2001).
    CAS PubMed Google Scholar
  37. Byrd, C. M. & Hruby, D. E. A conditional-lethal vaccinia virus mutant demonstrates that the I7L gene product is required for virion morphogenesis. Virol. J. 2, 4 (2005).
    PubMed PubMed Central Google Scholar
  38. Gillis, A. & Mahillon, J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 6, 2623–2672 (2014).
    PubMed PubMed Central Google Scholar
  39. Strömsten, N. J., Benson, S. D., Burnett, R. M., Bamford, D. H. & Bamford, J. K. The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J. Bacteriol. 185, 6985–6989 (2003).
    PubMed PubMed Central Google Scholar
  40. Bao, W., Kapitonov, V. V. & Jurka, J. Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons. Mob DNA 1, 3 (2010).
    PubMed PubMed Central Google Scholar
  41. Iyer, L. M., Makarova, K. S., Koonin, E. V. & Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 32, 5260–5279 (2004).
    CAS PubMed PubMed Central Google Scholar
  42. Strömsten, N. J., Bamford, D. H. & Bamford, J. K. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J. Mol. Biol. 348, 617–629 (2005).
    PubMed Google Scholar
  43. Cassetti, M. C., Merchlinsky, M., Wolffe, E. J., Weisberg, A. S. & Moss, B. DNA packaging mutant: repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J. Virol. 72, 5769–5780 (1998).
    CAS PubMed PubMed Central Google Scholar
  44. Burroughs, A. M., Iyer, L. M. & Aravind, L. Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn. 3, 48–65 (2007).
    CAS PubMed Google Scholar
  45. Salas, M. Protein-priming of DNA replication. Annu. Rev. Biochem. 60, 39–71 (1991).
    CAS PubMed Google Scholar
  46. Klassen, R. & Meinhardt, F. Linear protein-primed replicating plasmids in eukaryotic microbes. Microbiol. Monogr. 7, 188–216 (2007).
    Google Scholar
  47. Krupovic, M. & Koonin, E. V. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci. Rep. 4, 5347 (2014).
    PubMed PubMed Central Google Scholar
  48. Handa, H. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion 8, 15–25 (2008).
    CAS PubMed Google Scholar
  49. Filée, J. & Forterre, P. Viral proteins functioning in organelles: a cryptic origin? Trends Microbiol. 13, 510–513 (2005).
    PubMed Google Scholar
  50. Shutt, T. E. & Gray, M. W. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22, 90–95 (2006).
    CAS PubMed Google Scholar
  51. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).
    CAS PubMed Google Scholar
  52. Davison, A. J., Benko, M. & Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol. 84, 2895–2908 (2003).
    CAS PubMed Google Scholar
  53. Merckel, M. C., Huiskonen, J. T., Bamford, D. H., Goldman, A. & Tuma, R. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Mol. Cell 18, 161–170 (2005).
    CAS PubMed Google Scholar
  54. Hu, Z. Y., Li, G. H., Li, G. T., Yao, Q. & Chen, K. P. Bombyx mori bidensovirus: the type species of the new genus Bidensovirus in the new family Bidnaviridae. Chin. Sci. Bull. 58, 4528–4532 (2013).
    CAS Google Scholar
  55. Krupovic, M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr. Opin. Virol. 3, 578–586 (2013).
    CAS PubMed Google Scholar
  56. Iyer, L. M., Abhiman, S. & Aravind, L. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. Biol. Direct 3, 39 (2008).
    PubMed PubMed Central Google Scholar
  57. Jeske, S., Meinhardt, F. & Klassen, R. in Progress in Botany (eds Esser, K., Lüttge, U., Beyschlag, W. & Murata, J.) 98–129 (Springer, 2007).
    Google Scholar
  58. Iyer, L. M., Koonin, E. V. & Aravind, L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol. 3, 1 (2003).
    PubMed PubMed Central Google Scholar
  59. Wilson, D. W. & Meacock, P. A. Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res. 16, 8097–8112 (1988).
    CAS PubMed PubMed Central Google Scholar
  60. Deng, L. & Shuman, S. Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev. 12, 538–546 (1998).
    CAS PubMed PubMed Central Google Scholar
  61. Larsen, M., Gunge, N. & Meinhardt, F. Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 40, 243–246 (1998).
    CAS PubMed Google Scholar
  62. Kyrieleis, O. J., Chang, J., de la Pena, M., Shuman, S. & Cusack, S. Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure 22, 452–465 (2014).
    CAS PubMed PubMed Central Google Scholar
  63. Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nature Rev. Mol. Cell Biol. 3, 619–625 (2002).
    CAS Google Scholar
  64. Shuman, S. The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. Cold Spring Harb. Symp. Quant. Biol. 66, 301–312 (2001).
    CAS PubMed Google Scholar
  65. Tiggemann, M., Jeske, S., Larsen, M. & Meinhardt, F. Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18, 815–825 (2001).
    CAS PubMed Google Scholar
  66. Yutin, N. & Koonin, E. V. Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virol. J. 9, 161 (2012).
    CAS PubMed PubMed Central Google Scholar
  67. Sandmeyer, S. B. & Menees, T. M. Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr. Top. Microbiol. Immunol. 214, 261–296 (1996).
    CAS PubMed Google Scholar
  68. Yutin, N., Wolf, Y. I. & Koonin, E. V. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–467, 38–52 (2014).
    PubMed Google Scholar
  69. Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279 (2014).
    CAS PubMed Google Scholar
  70. Rixon, F. J. & Schmid, M. F. Structural similarities in DNA packaging and delivery apparatuses in Herpesvirus and dsDNA bacteriophages. Curr. Opin. Virol. 5, 105–110 (2014).
    CAS PubMed Google Scholar
  71. Philippe, N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341, 281–286 (2013).
    CAS PubMed Google Scholar
  72. Keeling, P. J. et al. The tree of eukaryotes. Trends Ecol. Evol. 20, 670–676 (2005).
    PubMed Google Scholar
  73. Desnues, C. et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc. Natl Acad. Sci. USA 109, 18078–18083 (2012).
    CAS PubMed Google Scholar
  74. Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA 99, 14758–14763 (2002).
    CAS PubMed Google Scholar
  75. Rux, J. J., Kuser, P. R. & Burnett, R. M. Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J. Virol. 77, 9553–9566 (2003).
    CAS PubMed PubMed Central Google Scholar
  76. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS PubMed Google Scholar
  77. Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 12, 36 (2014).
    PubMed PubMed Central Google Scholar

Download references