Cranial neural crest and the building of the vertebrate head (original) (raw)
Le Douarin, N. M. & Kalcheim, C. The Neural Crest (Cambridge Univ. Press, Cambridge, UK, 1999). Book Google Scholar
Nichols, D. H. Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J. Embryol. Exp. Morphol.64, 105–120 (1981). CASPubMed Google Scholar
Noden, D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev. Biol.42, 106–130 (1975). ArticleCASPubMed Google Scholar
Knecht, A. K. & Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nature Rev. Genet.3, 453–461 (2002). ArticleCASPubMed Google Scholar
Aybar, M. J. & Mayor, R. Early induction of neural crest cells: lessons learned from frog, fish and chick. Curr. Opin. Genet. Dev.12, 452–458 (2002). ArticleCASPubMed Google Scholar
Gammill, L. S. & Bronner-Fraser, M. Neural crest specification: migrating into genomics. Nature Rev. Neurosci.4, 795–805 (2003). ArticleCAS Google Scholar
Noden, D. M. The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev. Biol.67, 296–312 (1978). ArticleCASPubMed Google Scholar
Noden, D. M. Interactions and fates of avian craniofacial mesenchyme. Development103, S121–S140 (1988). Google Scholar
Le Lievre, C. L. Role of mesectodermal cells arising from the cephalic neural crest in the formation of the branchial arches and visceral skeleton. J. Embryol. Exp. Morphol.31, 453–477 (1974). Google Scholar
Le Lievre, C. S. Participation of neural crest-derived cells in the genesis of the skull in birds. J. Embryol. Exp. Morphol.47, 17–37 (1978). CASPubMed Google Scholar
Noden, D. M. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol.96, 144–165 (1983). A seminal study investigating the skeletal fate of cranial NCCs after heterotopic transplantation. It seemed to indicate that cranial NCCs are endowed with their morphogenetic potential before migration from the neural tube, and it raised the issue of how much intrinsic patterning information is contained in the NCCs. ArticleCASPubMed Google Scholar
Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The triple origin of skull in higher vertebrates: a study in quail–chick chimeras. Development117, 409–429 (1993). CASPubMed Google Scholar
Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M. & Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol.241, 106–116 (2002). References 7, 10, 12 and 13 are key studies mapping the contributions of cranial NCCs and mesoderm to the bones of the skull vault in mice and birds. ArticleCASPubMed Google Scholar
Chambers, D. & McGonnell, I. M. Neural crest: facing the facts of head development. Trends Genet.18, 381–384 (2002). ArticleCASPubMed Google Scholar
Richman, J. M. & Lee, S. H. About face: signals and genes controlling jaw patterning and identity in vertebrates. Bioessays25, 554–568 (2003). ArticleCASPubMed Google Scholar
Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature413, 797–803 (2001). ArticleCASPubMed Google Scholar
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet.1, 20–29 (2000). ArticleCASPubMed Google Scholar
Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol.11, 43–49 (2001). ArticleCASPubMed Google Scholar
Dupe, V. et al. In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3'RARE). Development124, 399–410 (1997). CASPubMed Google Scholar
Studer, M. et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development125, 1025–1036 (1998). CASPubMed Google Scholar
Gavalas, A. & Krumlauf, R. Retinoid signalling and hindbrain patterning. Curr. Opin. Genet. Dev.10, 380–386 (2000). ArticleCASPubMed Google Scholar
Irving, C. & Mason, I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development127, 177–186 (2000). CASPubMed Google Scholar
Maden, M. Role and distribution of retinoic acid during CNS development. Int. Rev. Cytol.209, 1–77 (2001). ArticleCASPubMed Google Scholar
Kiecker, C. & Niehrs, C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development128, 4189–4201 (2001). CASPubMed Google Scholar
Dupe, V. & Lumsden, A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development128, 2199–2208 (2001). CASPubMed Google Scholar
Maves, L., Jackman, W. & Kimmel, C. B. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development129, 3825–3837 (2002). CASPubMed Google Scholar
Bel-Vialar, S., Itasaki, N. & Krumlauf, R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development129, 5103–5115 (2002). CASPubMed Google Scholar
Walshe, J., Maroon, H., McGonnell, I. M., Dickson, C. & Mason, I. Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr. Biol.12, 1117–1123 (2002). ArticleCASPubMed Google Scholar
Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P. & Dolle, P. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development129, 3563–3574 (2002). CASPubMed Google Scholar
Nordstrom, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nature Neurosci.5, 525–532 (2002). ArticlePubMed Google Scholar
Oosterveen, T. et al. Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. EMBO J.22, 262–269 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science274, 1109–1115 (1996). ArticleCASPubMed Google Scholar
Rijli, F. M., Gavalas, A. & Chambon, P. Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int. J. Dev. Biol.42, 393–401 (1998). CASPubMed Google Scholar
Schneider-Maunoury, S., Gilardi-Hebenstreit, P. & Charnay, P. How to build a vertebrate hindbrain. Lessons from genetics. C. R. Acad. Sci. III321, 819–834 (1998). ArticleCASPubMed Google Scholar
Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development113, 1281–1291 (1991). CASPubMed Google Scholar
Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development116, 297–307 (1992). CASPubMed Google Scholar
Sechrist, J., Serbedzija, G. N., Scherson, T., Fraser, S. E. & Bronner-Fraser, M. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development118, 691–703 (1993). CASPubMed Google Scholar
Hunt, P. & Krumlauf, R. Deciphering the Hox code: clues to patterning branchial regions of the head. Cell66, 1075–1078 (1991). ArticleCASPubMed Google Scholar
Trainor, P. A. & Krumlauf, R. Hox genes, neural crest cells and branchial arch patterning. Curr. Opin. Cell Biol.13, 698–705 (2001). ArticleCASPubMed Google Scholar
Hunt, P. et al. A distinct Hox code for the branchial region of the vertebrate head. Nature353, 861–864 (1991). ArticleCASPubMed Google Scholar
Tumpel, S., Maconochie, M., Wiedemann, L. M. & Krumlauf, R. Conservation and diversity in the _cis_-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev. Biol.246, 45–56 (2002). ArticleCASPubMed Google Scholar
Trainor, P. A. & Krumlauf, R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nature Rev. Neurosci.1, 116–124 (2000). ArticleCAS Google Scholar
Krumlauf, R. Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet.9, 106–112 (1993). ArticleCASPubMed Google Scholar
Prince, V. & Lumsden, A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development120, 911–923 (1994). This important paper describes the analysis of chickHoxa2expression. Through grafting experiments, evidence is provided that the expression ofHoxa2is intrinsic to the premigratory NCC population, thereby supporting a NCC prepatterning model. CASPubMed Google Scholar
Rijli, F. M. et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell75, 1333–1349 (1993). ArticleCASPubMed Google Scholar
Gendron-Maguire, M., Mallo, M., Zhang, M. & Gridley, T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell75, 1317–1331 (1993). References 47 and 48 describe the targeted mutation ofHoxa2in the mouse. They revealed the pivotal role ofHoxa2as a selector gene for patterning of the NCCs of the hyoid arch, and they represent one of the best-known examples of homeotic transformation in vertebrates. ArticleCASPubMed Google Scholar
Grammatopoulos, G. A., Bell, E., Toole, L., Lumsden, A. & Tucker, A. S. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development127, 5355–5365 (2000). CASPubMed Google Scholar
Pasqualetti, M., Ori, M., Nardi, I. & Rijli, F. M. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development127, 5367–5378 (2000). CASPubMed Google Scholar
Hunter, M. P. & Prince, V. E. Zebrafish hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Dev. Biol.247, 367–389 (2002). References 49, 50 and 51 showed thatHoxa2has a conserved role as a selector of hyoid identity in vertebrates, as shown by functional experiments in chick, frog and zebrafish. ArticleCASPubMed Google Scholar
Barrow, J. R. & Capecchi, M. R. Targeted disruption of the Hoxb-2 locus in mice interferes with expression of Hoxb-1 and Hoxb-4. Development122, 3817–3828 (1996). CASPubMed Google Scholar
Davenne, M. et al. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron22, 677–691 (1999). ArticleCASPubMed Google Scholar
Chisaka, O. & Capecchi, M. R. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature350, 473–479 (1991). ArticleCASPubMed Google Scholar
Chisaka, O., Musci, T. S. & Capecchi, M. R. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature355, 516–520 (1992). ArticleCASPubMed Google Scholar
Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell66, 1105–1119 (1991). ArticleCASPubMed Google Scholar
Manley, N. R. & Capecchi, M. R. The role of Hoxa-3 in mouse thymus and thyroid development. Development121, 1989–2003 (1995). CASPubMed Google Scholar
Rossel, M. & Capecchi, M. R. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development126, 5027–5040 (1999). CASPubMed Google Scholar
Manley, N. R. & Capecchi, M. R. Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol.192, 274–288 (1997). ArticleCASPubMed Google Scholar
Gavalas, A. et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development125, 1123–1136 (1998). CASPubMed Google Scholar
Kuratani, S., Matsuo, I. & Aizawa, S. Developmental patterning and evolution of the mammalian viscerocranium: genetic insights into comparative morphology. Dev. Dyn.209, 139–155 (1997). ArticleCASPubMed Google Scholar
Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. & Aizawa, S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev.9, 2646–2658 (1995). ArticleCASPubMed Google Scholar
Kontges, G. & Lumsden, A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development122, 3229–3242 (1996). A landmark study in avian embryos, showing detailed fate-mapping data of rhombomeric NCCs and their contribution to the craniofacial structures. CASPubMed Google Scholar
Panganiban, G. & Rubenstein, J. L. Developmental functions of the Distal-less/Dlx homeobox genes. Development129, 4371–4386 (2002). CASPubMed Google Scholar
Beverdam, A. et al. Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past? Genesis34, 221–227 (2002). ArticleCASPubMed Google Scholar
Depew, M. J., Lufkin, T. & Rubenstein, J. L. Specification of jaw subdivisions by Dlx genes. Science298, 381–385 (2002). References 65 and 66 are key papers demonstrating the dorsoventral patterning role ofDlxgenes. A doubleDlx-5/-6knockout in the mouse resulted in the homeotic transformation of the lower jaw into a mirror image of the upper jaw. ArticleCASPubMed Google Scholar
Qiu, M. et al. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev.9, 2523–2538 (1995). ArticleCASPubMed Google Scholar
Qiu, M. et al. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev. Biol.185, 165–184 (1997). ArticleCASPubMed Google Scholar
Duboule, D. & Morata, G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet.10, 358–364 (1994). ArticleCASPubMed Google Scholar
Sumiyama, K. & Ruddle, F. H. Regulation of Dlx3 gene expression in visceral arches by evolutionarily conserved enhancer elements. Proc. Natl Acad. Sci. USA100, 4030–4034 (2003). ArticleCASPubMedPubMed Central Google Scholar
Price, J. A., Wright, J. T., Kula, K., Bowden, D. W. & Hart, T. C. A common DLX3 gene mutation is responsible for tricho-dento-osseous syndrome in Virginia and North Carolina families. J. Med. Genet.35, 825–828 (1998). ArticleCASPubMedPubMed Central Google Scholar
Morasso, M. I., Grinberg, A., Robinson, G., Sargent, T. D. & Mahon, K. A. Placental failure in mice lacking the homeobox gene Dlx3. Proc. Natl Acad. Sci. USA96, 162–167 (1999). ArticleCASPubMedPubMed Central Google Scholar
Saldivar, J. R., Krull, C. E., Krumlauf, R., Ariza-McNaughton, L. & Bronner-Fraser, M. Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa-3 in the avian embryo. Development122, 895–904 (1996). CASPubMed Google Scholar
Couly, G., Grapin-Botton, A., Coltey, P., Ruhin, B. & Le Douarin, N. M. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development125, 3445–3459 (1998). CASPubMed Google Scholar
Hunt, P., Clarke, J. D., Buxton, P., Ferretti, P. & Thorogood, P. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Dev. Biol.198, 82–104 (1998). ArticleCASPubMed Google Scholar
Trainor, P. A., Ariza-McNaughton, L. & Krumlauf, R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science295, 1288–1291 (2002). A key study revisiting Noden's transplantation experiments and showing that duplication of the first arch skeleton could be obtained only when the FGF8-expressing isthmic organizer was included in the graft of presumptive first arch NCCs. It supports plasticity of cranial NCCs and patterning by environmental signals. ArticleCASPubMed Google Scholar
Simon, H., Hornbruch, A. & Lumsden, A. Independent assignment of antero-posterior and dorso-ventral positional values in the developing chick hindbrain. Curr. Biol.5, 205–214 (1995). ArticleCASPubMed Google Scholar
Pasqualetti, M. & Rijli, F. M. Developmental biology: the plastic face. Nature416, 493–494 (2002). ArticleCASPubMed Google Scholar
Couly, G., Creuzet, S., Bennaceur, S., Vincent, C. & Le Douarin, N. M. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development129, 1061–1073 (2002). This landmark work demonstrated the role of the foregut endoderm in the control of cranial NCC development. The endoderm was shown to be a source of positional and morphogenetic information to pattern the face and jaw skeleton. It supports a NCC plasticity model. CASPubMed Google Scholar
Creuzet, S., Couly, G., Vincent, C. & Le Douarin, N. M. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development129, 4301–4313 (2002). References 74 and 80 revealed that Hox-expressing cranial NCCs in the first arch environment are unable to yield a jaw skeleton, thereby raising important evolutionary issues. Moreover, they indicate thatHoxexpression negatively regulates neural crest-mediated skeletogenesis. CASPubMed Google Scholar
Gavalas, A., Trainor, P., Ariza-McNaughton, L. & Krumlauf, R. Synergy between Hoxa1 and Hoxb1: the relationship between arch patterning and the generation of cranial neural crest. Development128, 3017–3027 (2001). CASPubMed Google Scholar
Abzhanov, A., Tzahor, E., Lassar, A. B. & Tabin, V. Dissimilar regulation of cell differentiation, in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development130, 4567–4579 (2003). An interesting analysis of cultured NCCs that investigates the differential skeletogenic potential of cranial versus trunk NCCs. It is shown that the same signal (for example, FGF) can induce dissimilar cell fate decisions in the two populationsin vitro. These differences correlate, at least in part, with theirHoxgene expression status. ArticleCASPubMed Google Scholar
Bobola, N. et al. Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1. Development130, 3403–3414 (2003). A paper that reports important observations aboutHoxa2-dependent molecular mechanisms in second pharyngeal arch patterning. It implicatesHoxa2in a pathway that antagonizes epithelial FGF signalling. ArticleCASPubMed Google Scholar
Trainor, P. & Krumlauf, R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nature Cell Biol.2, 96–102 (2000). ArticleCASPubMed Google Scholar
Schilling, T. F., Prince, V. & Ingham, P. W. Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest. Dev. Biol.231, 201–216 (2001). References 84 and 86 are key papers that provide evidence for NCC plasticity in mouse and zebrafish. They also show a role for the cell community effect and pharyngeal arch mesoderm in the maintenance of NCCHoxcode status. ArticleCASPubMed Google Scholar
Schneider, R. A., Hu, D., Rubenstein, J. L., Maden, M. & Helms, J. A. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development128, 2755–2767 (2001). CASPubMed Google Scholar
Trumpp, A., Depew, M. J., Rubenstein, J. L., Bishop, J. M. & Martin, G. R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev.13, 3136–3148 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hu, D., Marcucio, R. S. & Helms, J. A. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development130, 1749–1758 (2003). In this key paper, a region of the frontonasal ectoderm that expresses Fgf8 and Shh is identified as an organizing centre, which promotes morphogenesis and outgrowth of the frontonasal NCC mesenchyme. It supports a NCC plasticity model. ArticleCASPubMed Google Scholar
David, N. B., Saint-Etienne, L., Tsang, M., Schilling, T. F. & Rosa, F. M. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development129, 4457–4468 (2002). CASPubMed Google Scholar
Schneider, R. A. & Helms, J. A. The cellular and molecular origins of beak morphology. Science299, 565–568 (2003). An important study showing that the ability to generate beak morphology is an intrinsic property of NCCs. By grafting presumptive cranial NCCs between duck and quail, it was shown that NCCs carry out their own species-specific morphogenetic programme. It supports a NCC prepatterning model. ArticleCASPubMed Google Scholar
Cobourne, M. T. & Sharpe, P. T. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch. Oral Biol.48, 1–14 (2003). ArticleCASPubMed Google Scholar
Mitsiadis, T. A., Cheraud, Y., Sharpe, P. & Fontaine-Perus, J. Development of teeth in chick embryos after mouse neural crest transplantations. Proc. Natl Acad. Sci. USA100, 6541–6545 (2003). ArticleCASPubMedPubMed Central Google Scholar
Veitch, E., Begbie, J., Schilling, T. F., Smith, M. M. & Graham, A. Pharyngeal arch patterning in the absence of neural crest. Curr. Biol.9, 1481–1484 (1999). ArticleCASPubMed Google Scholar
Ferguson, C. A., Tucker, A. S. & Sharpe, P. T. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development127, 403–412 (2000). CASPubMed Google Scholar
Neuhauss, S. C. et al. Mutations affecting craniofacial development in zebrafish. Development123, 357–367 (1996). CASPubMed Google Scholar
Schilling, T. F. et al. Jaw and branchial arch mutants in zebrafish I: branchial arches. Development123, 329–344 (1996). CASPubMed Google Scholar
Francis-West, P., Ladher, R., Barlow, A. & Graveson, A. Signalling interactions during facial development. Mech. Dev.75, 3–28 (1998). ArticleCASPubMed Google Scholar
Fowles, L. F. et al. Genomic screen for genes involved in mammalian craniofacial development. Genesis35, 73–87 (2003). ArticleCASPubMed Google Scholar
Miller, C. T., Schilling, T. F., Lee, K., Parker, J. & Kimmel, C. B. sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. Development127, 3815–3828 (2000). CASPubMed Google Scholar
Kimmel, C. B., Miller, C. T. & Moens, C. B. Specification and morphogenesis of the zebrafish larval head skeleton. Dev. Biol.233, 239–257 (2001). ArticleCASPubMed Google Scholar
Kimmel, C. B., Ullmann, B., Walker, M., Miller, C. T. & Crump, J. G. Endothelin 1-mediated regulation of pharyngeal bone development in zebrafish. Development130, 1339–1351 (2003). ArticleCASPubMed Google Scholar
Miller, C. T., Yelon, D., Stainier, D. Y. & Kimmel, C. B. Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development130, 1353–1365 (2003). The elegant analyses in zebrafish that are described in references 102 and 103 are interesting examples of the morphogenetic activity of locally secreted factors in branchial arch development. A functional gradient of the epithelial signalling factor endothelin-1 provides positional information to NCCs for the correct localization of specific skeletal structures. ArticleCASPubMed Google Scholar
Kurihara, Y. et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature368, 703–710 (1994). ArticleCASPubMed Google Scholar
Clouthier, D. E. et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development125, 813–824 (1998). CASPubMed Google Scholar
Kempf, H., Linares, C., Corvol, P. & Gasc, J. M. Pharmacological inactivation of the endothelin type A receptor in the early chick embryo: a model of mispatterning of the branchial arch derivatives. Development125, 4931–4941 (1998). CASPubMed Google Scholar
Yanagisawa, H. et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development125, 825–836 (1998). CASPubMed Google Scholar
Ivey, K. et al. Gαq and Gα11 proteins mediate endothelin-1 signaling in neural crest-derived pharyngeal arch mesenchyme. Dev. Biol.255, 230–237 (2003). ArticleCASPubMed Google Scholar
Clouthier, D. E. et al. Signaling pathways crucial for craniofacial development revealed by endothelin-A receptor-deficient mice. Dev. Biol.217, 10–24 (2000). ArticleCASPubMed Google Scholar
Yanagisawa, H., Clouthier, D. E., Richardson, J. A., Charite, J. & Olson, E. N. Targeted deletion of a branchial arch-specific enhancer reveals a role of dHAND in craniofacial development. Development130, 1069–1078 (2003). ArticleCASPubMed Google Scholar
Thomas, T. et al. A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development125, 3005–3014 (1998). CASPubMed Google Scholar
Charite, J. et al. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev.15, 3039–3049 (2001). References 110 and 112 are two important studies that dissected the molecular pathway downstream of endothelin-1, which is involved in ventral patterning of the first pharyngeal arch. Dlx6 directly regulates the expression of dHAND in response to endothelin-1 signalling from the arch epithelium. ArticleCASPubMedPubMed Central Google Scholar
Bachler, M. & Neubuser, A. Expression of members of the Fgf family and their receptors during midfacial development. Mech. Dev.100, 313–316 (2001). ArticleCASPubMed Google Scholar
Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K. & Meyers, E. N. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development129, 4613–4625 (2002). CASPubMed Google Scholar
Neubuser, A., Peters, H., Balling, R. & Martin, G. R. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell90, 247–255 (1997). ArticleCASPubMed Google Scholar
Tucker, A. S., Yamada, G., Grigoriou, M., Pachnis, V. & Sharpe, P. T. Fgf-8 determines rostral–caudal polarity in the first branchial arch. Development126, 51–61 (1999). CASPubMed Google Scholar
Grigoriou, M., Tucker, A. S., Sharpe, P. T. & Pachnis, V. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development125, 2063–2074 (1998). CASPubMed Google Scholar
Rivera-Perez, J. A., Mallo, M., Gendron-Maguire, M., Gridley, T. & Behringer, R. R. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development121, 3005–3012 (1995). CASPubMed Google Scholar
Yamada, G. et al. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development121, 2917–2922 (1995). CASPubMed Google Scholar
Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development121, 439–451 (1995). CASPubMed Google Scholar
Shigetani, Y., Nobusada, Y. & Kuratani, S. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial–mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev. Biol.228, 73–85 (2000). ArticleCASPubMed Google Scholar
Shigetani, Y. et al. Heterotopic shift of epithelial–mesenchymal interactions in vertebrate jaw evolution. Science296, 1316–1319 (2002). This important paper offers a comparison of the distribution and function of signalling molecules and downstream homeobox genes in the oral regions of jawed (chick) and jawless (lamprey) vertebrate embryos. It raises interesting issues about the evolution of the mandibular arch in the vertebrate lineage. ArticleCASPubMed Google Scholar
Mandler, M. & Neubuser, A. FGF signaling is necessary for the specification of the odontogenic mesenchyme. Dev. Biol.240, 548–559 (2001). ArticleCASPubMed Google Scholar
Nissen, R. M., Yan, J., Amsterdam, A., Hopkins, N. & Burgess, S. M. Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning. Development130, 2543–2554 (2003). ArticleCASPubMed Google Scholar
Furthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development128, 2175–2186 (2001). CASPubMed Google Scholar
Trokovic, N., Trokovic, R., Mai, P. & Partanen, J. Fgfr1 regulates patterning of the pharyngeal region. Genes Dev.17, 141–153 (2003). This interesting paper shows that functional inactivation ofFgfr1in the mouse results in patterning defects of the second pharyngeal arch. The data indicate thatFgfr1function is required to create a permissive environment for NCC migration. ArticleCASPubMedPubMed Central Google Scholar
Sarkar, S., Petiot, A., Copp, A., Ferretti, P. & Thorogood, P. FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development128, 2143–2152 (2001). CASPubMed Google Scholar
Richman, J. M., Herbert, M., Matovinovic, E. & Walin, J. Effect of fibroblast growth factors on outgrowth of facial mesenchyme. Dev. Biol.189, 135–147 (1997). ArticleCASPubMed Google Scholar
Hu, D. & Helms, J. A. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development126, 4873–4884 (1999). CASPubMed Google Scholar
Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet.21, 444–448 (1999). ArticleCASPubMed Google Scholar
Lohnes, D. et al. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development120, 2723–2748 (1994). CASPubMed Google Scholar
Kanzler, B., Foreman, R. K., Labosky, P. A. & Mallo, M. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development127, 1095–1104 (2000). CASPubMed Google Scholar
Lee, S. H., Fu, K. K., Hui, J. N. & Richman, J. M. Noggin and retinoic acid transform the identity of avian facial prominences. Nature414, 909–912 (2001). An important study showing the role of BMP molecules in the development of facial structures. By inhibiting the BMP signalling pathway, the authors induced transformation of the maxillary prominence into a supernumerary frontonasal process. ArticleCASPubMed Google Scholar
Mina, M., Wang, Y. H., Ivanisevic, A. M., Upholt, W. B. & Rodgers, B. Region- and stage-specific effects of FGFs and BMPs in chick mandibular morphogenesis. Dev. Dyn.223, 333–352 (2002). ArticleCASPubMed Google Scholar
Semba, I. et al. Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Dev. Dyn.217, 401–414 (2000). ArticleCASPubMed Google Scholar
Barlow, A. J. & Francis-West, P. H. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia. Development124, 391–398 (1997). CASPubMed Google Scholar
Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R. & de Crombrugghe, B. Sox9 is required for cartilage formation. Nature Genet.22, 85–89 (1999). ArticleCASPubMed Google Scholar
Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev.16, 2813–2828 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bendall, A. J. & Abate-Shen, C. Roles for Msx and Dlx homeoproteins in vertebrate development. Gene247, 17–31 (2000). ArticleCASPubMed Google Scholar
Hu, G., Lee, H., Price, S. M., Shen, M. M. & Abate-Shen, C. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development128, 2373–2384 (2001). CASPubMed Google Scholar
Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet.6, 348–356 (1994). ArticleCASPubMed Google Scholar
van den Boogaard, M. J., Dorland, M., Beemer, F. A. & van Amstel, H. K. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nature Genet.24, 342–343 (2000). ArticleCASPubMed Google Scholar
Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genet.24, 391–395 (2000). ArticleCASPubMed Google Scholar
Wilkie, A. O. et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nature Genet.24, 387–390 (2000). ArticleCASPubMed Google Scholar
Kanzler, B., Kuschert, S. J., Liu, Y. H. & Mallo, M. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development125, 2587–2597 (1998). CASPubMed Google Scholar
Wilkie, A. O. & Morriss-Kay, G. M. Genetics of craniofacial development and malformation. Nature Rev. Genet.2, 458–468 (2001). ArticleCASPubMed Google Scholar
Cohen, M. M. Jr. Malformations of the craniofacial region: evolutionary, embryonic, genetic, and clinical perspectives. Am. J. Med. Genet.115, 245–268 (2002). ArticlePubMed Google Scholar
McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A. & Gehring, W. J. A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature308, 428–433 (1984). ArticleCASPubMed Google Scholar
Bridges, C. & Morgan, T. H. The Third Chromosome Group of Mutant Characters in Drosophila melanogaster (Carnegie Institution, Washington DC, 1923). Book Google Scholar
Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature276, 565–570 (1978). ArticleCASPubMed Google Scholar
Kmita, M. & Duboule, D. Organizing axes in time and space; 25 years of colinear tinkering. Science301, 331–333 (2003). ArticleCASPubMed Google Scholar
Ferrier, D. E. & Holland, P. W. Ancient origin of the Hox gene cluster. Nature Rev. Genet.2, 33–38 (2001). ArticleCASPubMed Google Scholar
Graham, A., Papalopulu, N. & Krumlauf, R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell57, 367–378 (1989). ArticleCASPubMed Google Scholar
Duboule, D. & Dolle, P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J.8, 1497–1505 (1989). ArticleCASPubMedPubMed Central Google Scholar
McGonnell, I. M. & Graham, A. Trunk neural crest has skeletogenic potential. Curr. Biol.12, 767–771 (2002). ArticleCASPubMed Google Scholar
Noden, D. M. Craniofacial development: new views on old problems. Anat. Rec.208, 1–13 (1984). ArticleCASPubMed Google Scholar
Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development127, 1671–1679 (2000). CASPubMed Google Scholar
Carlson, B. M. Patten's Foundations of Embryology 6th edn (McGraw-Hill Publishing Company, 1996). Google Scholar