Role of the Immune system in chronic pain (original) (raw)
Numazaki, M. & Tominaga, M. Nociception and TRP Channels. Curr. Drug Targets CNS Neurol. Disord.3, 479–485 (2004). ArticleCASPubMed Google Scholar
Lewin, G. R. & Moshourab, R. Mechanosensation and pain. J. Neurobiol.61, 30–44 (2004). ArticlePubMed Google Scholar
Cook, S. P., Vulchanova, L., Hargreaves, K. M., Elde, R. & McCleskey, E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature387, 505–508 (1997). ArticleCASPubMed Google Scholar
Stassen, M., Hultner, L. & Schmitt, E. Classical and alternative pathways of mast cell activation. Crit. Rev. Immunol.22, 115–140 (2002). ArticleCASPubMed Google Scholar
Drummond, P. D. The effect of cutaneous mast cell degranulation on sensitivity to heat. Inflamm. Res.53, 309–315 (2004). ArticleCASPubMed Google Scholar
Parada, C. A., Tambeli, C. H., Cunha, F. Q. & Ferreira, S. H. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience102, 937–944 (2001). ArticleCASPubMed Google Scholar
Ribeiro, R. A. et al. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur. J. Pharmacol.387, 111–118 (2000). ArticleCASPubMed Google Scholar
Hoogerwerf, W. A. et al. The role of mast cells in the pathogenesis of pain in chronic pancreatitis. BMC Gastroenterol.5, 8 (2005). ArticlePubMedPubMed Central Google Scholar
Piovezan, A. P. et al. Endothelins contribute towards nociception induced by antigen in ovalbumin-sensitised mice. Br. J. Pharmacol.141, 755–763 (2004). ArticleCASPubMedPubMed Central Google Scholar
Oberpenning, F., van Ophoven, A. & Hertle, L. Interstitial cystitis: an update. Curr. Opin. Urol.12, 321–332 (2002). ArticlePubMed Google Scholar
Thomazzi, S. M., Ribeiro, R. A., Campos D. I., Cunha, F. Q. & Ferreira, S. H. Tumor necrosis factor, interleukin-1 and interleukin-8 mediate the nociceptive activity of supernatant of LPS-stimulated macrophages. Mediators Inflamm.6, 195–200 (1997). ArticleCASPubMedPubMed Central Google Scholar
Souza, G. E., Cunha, F. Q., Mello, R. & Ferreira, S. H. Neutrophil migration induced by inflammatory stimuli is reduced by macrophage depletion. Agents Actions24, 377–380 (1988). ArticleCASPubMed Google Scholar
Brack, A. & Stein, C. Potential links between leukocytes and antinociception. Pain111, 1–2 (2004). ArticlePubMed Google Scholar
Heuft, H. G., Goudeva, L. & Blasczyk, R. A comparative study of adverse reactions occurring after administration of glycosylated granulocyte colony stimulating factor and/or dexamethasone for mobilization of neutrophils in healthy donors. Ann. Hematol.83, 279–285 (2004). ArticleCASPubMed Google Scholar
Chou, T. C., Chang, L. P., Li, C. Y., Wong, C. S. & Yang, S. P. The antiinflammatory and analgesic effects of baicalin in carrageenan-evoked thermal hyperalgesia. Anesth. Analg.97, 1724–1729 (2003). ArticleCASPubMed Google Scholar
McMahon, S. B., Cafferty, W. B. & Marchand, F. Immune and glial cell factors as pain mediators and modulators. Exp. Neurol.192, 444–462 (2005). This article reviews immune and glial components of experimental pain, highlighting the actions of some of the key immune-derived mediators and modulators of pain transmission. ArticleCASPubMed Google Scholar
Bennett, G., al Rashed, S., Hoult, J. R. & Brain, S. D. Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils. Pain77, 315–322 (1998). ArticleCASPubMed Google Scholar
Farquhar-Smith, W. P. & Rice, A. S. A novel neuroimmune mechanism in cannabinoid-mediated attenuation of nerve growth factor-induced hyperalgesia. Anesthesiology99, 1391–1401 (2003). ArticlePubMed Google Scholar
Sibilia, J. Novel concepts and treatments for autoimmune disease: ten focal points. Joint Bone Spine71, 511–517 (2004). ArticlePubMed Google Scholar
McMahon, S. B., Bennett, D. L. H. & Bevan S. in Textbook of Pain (eds McMahon, S. B. & Koltzenburg, M.) Chapter 3 (Elsevier, London, in the press).
Omote, K. et al. Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res.912, 171–175 (2001). ArticleCASPubMed Google Scholar
Thomsen, L. L. & Olesen, J. Nitric oxide in primary headaches. Curr. Opin. Neurol.14, 315–321 (2001). ArticleCASPubMed Google Scholar
Aley, K. O., McCarter, G. & Levine, J. D. Nitric oxide signaling in pain and nociceptor sensitization in the rat. J. Neurosci.18, 7008–7014 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hanauer, S. B. Efficacy and safety of tumor necrosis factor antagonists in Crohn's disease: overview of randomized clinical studies. Rev. Gastroenterol. Disord.4 (Suppl. 3), S18–S24 (2004). PubMed Google Scholar
Roberts, L. & McColl, G. J. Tumour necrosis factor inhibitors: risks and benefits in patients with rheumatoid arthritis. Intern. Med. J.34, 687–693 (2004). ArticleCASPubMed Google Scholar
Bonnington, J. K. & McNaughton, P. A. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol. (Lond.)551, 433–446 (2003). ArticleCAS Google Scholar
Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA97, 6155–6160 (2000). ArticleCASPubMedPubMed Central Google Scholar
Noorbakhsh, F., Vergnolle, N., Hollenberg, M. D. & Power, C. Proteinase-activated receptors in the nervous system. Nature Rev. Neurosci.4, 981–990 (2003). ArticleCAS Google Scholar
Oh, S. B. et al. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J. Neurosci.21, 5027–5035 (2001). The first evidence that chemokines have a direct effect on primary nociceptive neurons, and, therefore, a potential role in pain transmission. ArticleCASPubMedPubMed Central Google Scholar
Sindrup, S. H. & Jensen, T. S. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain83, 389–400 (1999). ArticleCASPubMed Google Scholar
Le Bars, D., Gozariu, M. & Cadden, S. W. Animal models of nociception. Pharmacol. Rev.53, 597–652 (2001). CASPubMed Google Scholar
Ossipov, M. H., Lai, J., Malan, T. P. Jr & Porreca, F. Spinal and supraspinal mechanisms of neuropathic pain. Ann. NY Acad. Sci.909, 12–24 (2000). ArticleCASPubMed Google Scholar
Zuo, Y., Perkins, N. M., Tracey, D. J. & Geczy, C. L. Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain105, 467–479 (2003). ArticlePubMed Google Scholar
Perkins, N. M. & Tracey, D. J. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience101, 745–757 (2000). ArticleCASPubMed Google Scholar
Daemen, M. A. et al. Neurogenic inflammation in an animal model of neuropathic pain. Neurol. Res.20, 41–45 (1998). ArticleCASPubMed Google Scholar
Levine, J. D., Coderre, T. J., White, D. M., Finkbeiner, W. E. & Basbaum, A. I. Denervation-induced inflammation in the rat. Neurosci. Lett.119, 37–40 (1990). ArticleCASPubMed Google Scholar
Cui, J. G., Holmin, S., Mathiesen, T., Meyerson, B. A. & Linderoth, B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain88, 239–248 (2000). ArticleCASPubMed Google Scholar
Sommer, C. & Schafers, M. Painful mononeuropathy in C57BL/Wld mice with delayed Wallerian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res.784, 154–162 (1998). ArticleCASPubMed Google Scholar
Myers, R. R., Heckman, H. M. & Rodriguez, M. Reduced hyperalgesia in nerve-injured WLD mice: relationship to nerve fiber phagocytosis, axonal degeneration, and regeneration in normal mice. Exp. Neurol.141, 94–101 (1996). ArticleCASPubMed Google Scholar
Liu, T., van Rooijen, N. & Tracey, D. J. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain86, 25–32 (2000). ArticleCASPubMed Google Scholar
Heumann, R. et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl Acad. Sci. USA84, 8735–8739 (1987). ArticleCASPubMedPubMed Central Google Scholar
Rutkowski, M. D., Pahl, J. L., Sweitzer, S., van Rooijen, N. & DeLeo, J. A. Limited role of macrophages in generation of nerve injury-induced mechanical allodynia. Physiol. Behav.71, 225–235 (2002). Article Google Scholar
Moalem, G., Xu, K. & Yu, L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience129, 767–777 (2004). ArticleCASPubMed Google Scholar
Tsai, Y. C., Won, S. J. & Lin, M. T. Effects of morphine on immune response in rats with sciatic constriction injury. Pain88, 155–160 (2000). ArticleCASPubMed Google Scholar
Tsai, Y. C. & Won, S. J. Effects of tramadol on T lymphocyte proliferation and natural killer cell activity in rats with sciatic constriction injury. Pain92, 63–69 (2001). ArticleCASPubMed Google Scholar
Lu, X. & Richardson, P. M. Responses of macrophages in rat dorsal root ganglia following peripheral nerve injury. J. Neurocytol.22, 334–341 (1993). ArticleCASPubMed Google Scholar
Sommer, C. & Schroder, J. M. HLA-DR expression in peripheral neuropathies: the role of Schwann cells, resident and hematogenous macrophages, and endoneurial fibroblasts. Acta Neuropathol. (Berl.)89, 63–71 (1995). One of the first papers to identify a role for macrophages in pain after peripheral nerve injury. ArticleCAS Google Scholar
Hu, P. & McLachlan, E. M. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience112, 23–38 (2002). ArticleCASPubMed Google Scholar
Dina, O. A. et al. Integrin signaling in inflammatory and neuropathic pain in the rat. Eur. J. Neurosci.19, 634–642 (2004). ArticlePubMed Google Scholar
Fu, W. M. et al. Inhibition of neuropathic pain by a potent disintegrin — triflavin. Neurosci. Lett.368, 263–268 (2004). ArticleCASPubMed Google Scholar
Sweitzer, S. M., White, K. A., Dutta, C. & DeLeo, J. A. The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J. Neuroimmunol.125, 82–93 (2002). ArticleCASPubMed Google Scholar
Boddeke, E. W. Involvement of chemokines in pain. Eur. J. Pharmacol.429, 115–119 (2001). An informative review about the role of chemokines in pain. ArticleCASPubMed Google Scholar
George, A., Schmidt, C., Weishaupt, A., Toyka, K. V. & Sommer, C. Serial determination of tumor necrosis factor-α content in rat sciatic nerve after chronic constriction injury. Exp. Neurol.160, 124–132 (1999). ArticleCASPubMed Google Scholar
Schafers, M., Svensson, C. I., Sommer, C. & Sorkin, L. S. Tumor necrosis factor-α induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci.23, 2517–2521 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schafers, M., Geis, C., Svensson, C. I., Luo, Z. D. & Sommer, C. Selective increase of tumour necrosis factor-α in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur. J. Neurosci.17, 791–804 (2003). ArticlePubMed Google Scholar
Wagner, R. & Myers, R. R. Schwann cells produce tumor necrosis factor α: expression in injured and non-injured nerves. Neuroscience73, 625–629 (1996). ArticleCASPubMed Google Scholar
Wagner, R. & Myers, R. R. Endoneurial injection of TNF-α produces neuropathic pain behaviors. Neuroreport7, 2897–2901 (1996). A historically important article that provided some of the first evidence that TNFα might be involved in pain modulation after peripheral nerve injury. ArticleCASPubMed Google Scholar
Sommer, C. et al. Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res.913, 86–89 (2001). ArticleCASPubMed Google Scholar
Sommer, C., Schafers, M., Marziniak, M. & Toyka, K. V. Etanercept reduces hyperalgesia in experimental painful neuropathy. J. Peripher. Nerv. Syst.6, 67–72 (2001). ArticleCASPubMed Google Scholar
Lindenlaub, T., Teuteberg, P., Hartung, T. & Sommer, C. Effects of neutralizing antibodies to TNF-α on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res.866, 15–22 (2000). ArticleCASPubMed Google Scholar
Schafers, M., Brinkhoff, J., Neukirchen, S., Marziniak, M. & Sommer, C. Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-α and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice. Neurosci. Lett.310, 113–116 (2001). ArticleCASPubMed Google Scholar
Sommer, C., Schmidt, C. & George, A. Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp. Neurol.151, 138–142 (1998). ArticleCASPubMed Google Scholar
George, A., Buehl, A. & Sommer, C. Tumor necrosis factor receptor 1 and 2 proteins are differentially regulated during Wallerian degeneration of mouse sciatic nerve. Exp. Neurol.192, 163–166 (2005). ArticleCASPubMed Google Scholar
Sommer, C., Petrausch, S., Lindenlaub, T. & Toyka, K. V. Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosci. Lett.270, 25–28 (1999). ArticleCASPubMed Google Scholar
Fukuoka, H., Kawatani, M., Hisamitsu, T. & Takeshige, C. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1 β in the rat. Brain Res.657, 133–140 (1994). ArticleCASPubMed Google Scholar
Obreja, O., Rathee, P. K., Lips, K. S., Distler, C. & Kress, M. IL-1 β potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J.16, 1497–1503 (2002). ArticleCASPubMed Google Scholar
De Jongh, R. F. et al. The role of interleukin-6 in nociception and pain. Anesth. Analg.96, 1096–1103 (2003). This article reviews the involvement of IL-6 in pain. ArticleCASPubMed Google Scholar
Murphy, P. G. et al. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur. J. Neurosci.11, 2243–2253 (1999). ArticleCASPubMed Google Scholar
Ramer, M. S., Murphy, P. G., Richardson, P. M. & Bisby, M. A. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain78, 115–121 (1998). ArticleCASPubMed Google Scholar
Tanaka, T., Minami, M., Nakagawa, T. & Satoh, M. Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci. Res.48, 463–469 (2004). ArticleCASPubMed Google Scholar
Abbadie, C. et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl Acad. Sci. USA100, 7947–7952 (2003). ArticleCASPubMedPubMed Central Google Scholar
Milligan, E. D. et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci.20, 2294–2302 (2004). ArticleCASPubMed Google Scholar
Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci.20, 1150–1160 (2004). The first paper to show that fractalkine release by neurons could be an activator of microglia. ArticlePubMed Google Scholar
Cunha, J. M., Cunha, F. Q., Poole, S. & Ferreira, S. H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br. J. Pharmacol.130, 1418–1424 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sommer, C. & Kress, M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett.361, 184–187 (2004). A short review on the involvement of different cytokines in inflammatory and neuropathic pain. ArticleCASPubMed Google Scholar
Ma, W. & Eisenach, J. C. Four PGE2 EP receptors are up-regulated in injured nerve following partial sciatic nerve ligation. Exp. Neurol.183, 581–592 (2003). ArticleCASPubMed Google Scholar
Ma, W. & Eisenach, J. C. Morphological and pharmacological evidence for the role of peripheral prostaglandins in the pathogenesis of neuropathic pain. Eur. J. Neurosci.15, 1037–1047 (2002). ArticlePubMed Google Scholar
Ma, W. & Eisenach, J. C. Intraplantar injection of a cyclooxygenase inhibitor ketorolac reduces immunoreactivities of substance P, calcitonin gene-related peptide, and dynorphin in the dorsal horn of rats with nerve injury or inflammation. Neuroscience121, 681–690 (2003). ArticleCASPubMed Google Scholar
Sweitzer, S. M., Hickey, W. F., Rutkowski, M. D., Pahl, J. L. & DeLeo, J. A. Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain100, 163–170 (2002). ArticlePubMed Google Scholar
Rutkowski, M. D., Lambert, F., Raghavendra, V. & DeLeo, J. A. Presence of spinal B7.2 (CD86) but not B7.1 (CD80) co-stimulatory molecules following peripheral nerve injury: role of nondestructive immunity in neuropathic pain. J. Neuroimmunol.146, 94–98 (2004). ArticleCASPubMed Google Scholar
De Nicola, A. F. et al. Steroid effects on glial cells: detrimental or protective for spinal cord function? Ann. NY Acad. Sci.1007, 317–328 (2003). ArticleCASPubMed Google Scholar
Meller, S. T., Dykstra, C., Grzybycki, D., Murphy, S. & Gebhart, G. F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology33, 1471–1478 (1994). ArticleCASPubMed Google Scholar
Milligan, E. D. et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res.861, 105–116 (2000). ArticleCASPubMed Google Scholar
Milligan, E. D. et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J. Neurosci.23, 1026–1040 (2003). ArticleCASPubMedPubMed Central Google Scholar
Aumeerally, N., Allen, G. & Sawynok, J. Glutamate-evoked release of adenosine and regulation of peripheral nociception. Neuroscience127, 1–11 (2004). ArticleCASPubMed Google Scholar
Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther.306, 624–630 (2003). This paper provides the first evidence that microglia are involved in the initiation, rather than the maintenance, of neuropathic pain. ArticleCASPubMed Google Scholar
Ledeboer, A. et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain115, 71–83 (2005). ArticleCASPubMed Google Scholar
Hassel, B., Paulsen, R. E., Johnsen, A. & Fonnum, F. Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res.576, 120–124 (1992). ArticleCASPubMed Google Scholar
Zhang, S. C., Goetz, B. D. & Duncan, I. D. Suppression of activated microglia promotes survival and function of transplanted oligodendroglial progenitors. Glia41, 191–198 (2003). ArticlePubMed Google Scholar
Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature424, 778–783 (2003). An important study showing that P2X4 is a key mediator of microglial activation and is involved in neuropathic, but not inflammatory, pain. ArticleCASPubMed Google Scholar
Guillemin, G. J. & Brew, B. J. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol.75, 388–397 (2004). ArticleCASPubMed Google Scholar
Colburn, R. W., Rickman, A. J. & DeLeo, J. A. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol.157, 289–304 (1999). ArticleCASPubMed Google Scholar
Colburn, R. W. et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J. Neuroimmunol.79, 163–175 (1997). ArticleCASPubMed Google Scholar
Hashizume, H., DeLeo, J. A., Colburn, R. W. & Weinstein, J. N. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine25, 1206–1217 (2000). ArticleCASPubMed Google Scholar
Winkelstein, B. A. & DeLeo, J. A. Nerve root injury severity differentially modulates spinal glial activation in a rat lumbar radiculopathy model: considerations for persistent pain. Brain Res.956, 294–301 (2002). ArticleCASPubMed Google Scholar
Raghavendra, V., Tanga, F., Rutkowski, M. D. & DeLeo, J. A. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain104, 655–664 (2003). ArticleCASPubMed Google Scholar
Tanga, F. Y., Raghavendra, V. & DeLeo, J. A. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem. Int.45, 397–407 (2004). ArticleCASPubMed Google Scholar
Coyle, D. E. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia23, 75–83 (1998). ArticleCASPubMed Google Scholar
Zhuang, Z. Y., Gerner, P., Woolf, C. J. & Ji, R. R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain114, 149–159 (2005). ArticlePubMed Google Scholar
Le Feuvre, R., Brough, D. & Rothwell, N. Extracellular ATP and P2X7 receptors in neurodegeneration. Eur. J. Pharmacol.447, 261–269 (2002). ArticleCASPubMed Google Scholar
Chessell, I. P. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain114, 386–396 (2005). ArticleCASPubMed Google Scholar
Klein, M. A. et al. Impaired neuroglial activation in interleukin-6 deficient mice. Glia19, 227–233 (1997). ArticleCASPubMed Google Scholar
Winkelstein, B. A., Rutkowski, M. D., Sweitzer, S. M., Pahl, J. L. & DeLeo, J. A. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J. Comp. Neurol.439, 127–139 (2001). ArticleCASPubMed Google Scholar
Tanga, F. Y., Nutile-McMenemy, N. & DeLeo, J. A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA102, 5856–5861 (2005). Showed, for the first time, the involvement of TLR4 in microglial activation in neuropathic pain models. ArticleCASPubMedPubMed Central Google Scholar
Kim, S. Y. et al. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport13, 2483–2486 (2002). ArticleCASPubMed Google Scholar
Jin, S. X., Zhuang, Z. Y., Woolf, C. J. & Ji, R. R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci.23, 4017–4022 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. & Inoue, K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia45, 89–95 (2004). ArticlePubMed Google Scholar
Tsuda, M., Inoue, K. & Salter, M. W. Neuropathic pain and spinal microglia: a big problem from molecules in 'small' glia. Trends Neurosci.28, 101–107 (2005). A critical review about the influence of microglia in neuropathic pain. ArticleCASPubMed Google Scholar
Watkins, L. R. & Maier, S. F. Glia: a novel drug discovery target for clinical pain. Nature Rev. Drug Discov.2, 973–985 (2003). ArticleCAS Google Scholar
Sung, C. S. et al. Intrathecal interleukin-1β administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res.1015, 145–153 (2004). ArticleCASPubMed Google Scholar
Reeve, A. J., Patel, S., Fox, A., Walker, K. & Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain4, 247–257 (2000). ArticleCASPubMed Google Scholar
DeLeo, J. A., Colburn, R. W., Nichols, M. & Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res.16, 695–700 (1996). ArticleCASPubMed Google Scholar
DeLeo, J. A., Colburn, R. W. & Rickman, A. J. Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res.759, 50–57 (1997). ArticleCASPubMed Google Scholar
Holguin, A. et al. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain110, 517–530 (2004). ArticleCASPubMed Google Scholar
Wu, J., Fang, L., Lin, Q. & Willis, W. D. Nitric oxide synthase in spinal cord central sensitization following intradermal injection of capsaicin. Pain94, 47–58 (2001). ArticleCASPubMed Google Scholar
Durrenberger, P. F. et al. Cyclooxygenase-2 (Cox-2) in injured human nerve and a rat model of nerve injury. J. Peripher. Nerv. Syst.9, 15–25 (2004). ArticleCASPubMed Google Scholar
Broom, D. C. et al. Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience124, 891–900 (2004). ArticleCASPubMed Google Scholar
Schafers, M., Marziniak, M., Sorkin, L. S., Yaksh, T. L. & Sommer, C. Cyclooxygenase inhibition in nerve-injury- and TNF-induced hyperalgesia in the rat. Exp. Neurol.185, 160–168 (2004). ArticleCASPubMed Google Scholar
Zhu, X. & Eisenach, J. C. Cyclooxygenase-1 in the spinal cord is altered after peripheral nerve injury. Anesthesiology99, 1175–1179 (2003). ArticleCASPubMed Google Scholar
Ma, W., Du, W. & Eisenach, J. C. Role for both spinal cord COX-1 and COX-2 in maintenance of mechanical hypersensitivity following peripheral nerve injury. Brain Res.937, 94–99 (2002). ArticleCASPubMed Google Scholar
Finnerup, N. B. & Jensen, T. S. Spinal cord injury pain — mechanisms and treatment. Eur. J. Neurol.11, 73–82 (2004). A good review about spinal cord injury and pain, with a useful section on different underlying mechanisms. ArticleCASPubMed Google Scholar
Popovich, P. G. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog. Brain Res.128, 43–58 (2000). ArticleCASPubMed Google Scholar
Watanabe, T. et al. Differential activation of microglia after experimental spinal cord injury. J. Neurotrauma16, 255–265 (1999). ArticleCASPubMed Google Scholar
Marchand, F., Grist, J., Bradbury, E. J. & McMahon, S. B. Role of microglia in spinal cord injury pain in rats. Intl Assoc. Study Pain Abstr. 136265 (2005).
Gris, D. et al. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J. Neurosci.24, 4043–4051 (2004). ArticleCASPubMedPubMed Central Google Scholar
Oatway, M. A., Chen, Y., Bruce, J. C., Dekaban, G. A. & Weaver, L. C. Anti-CD11d integrin antibody treatment restores normal serotonergic projections to the dorsal, intermediate, and ventral horns of the injured spinal cord. J. Neurosci.25, 637–647 (2005). ArticleCASPubMedPubMed Central Google Scholar
Demjen, D. et al. Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nature Med.10, 389–395 (2004). ArticleCASPubMed Google Scholar
Pearse, D. D., Pereira, F. C., Stolyarova, A., Barakat, D. J. & Bunge, M. B. Inhibition of tumour necrosis factor-α by antisense targeting produces immunophenotypical and morphological changes in injury-activated microglia and macrophages. Eur. J. Neurosci.20, 3387–3396 (2004). ArticlePubMed Google Scholar
Perrin, F. E., Lacroix, S., Aviles-Trigueros, M. & David, S. Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β in Wallerian degeneration. Brain128, 854–866 (2005). ArticlePubMed Google Scholar
Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Med.10, 821–827 (2004). ArticleCASPubMed Google Scholar
Hu, X. et al. Activation of nuclear factor-κB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rat hippocampus and cortex. J. Neurochem.93, 26–37 (2005). ArticleCASPubMed Google Scholar
Qiu, J. et al. Bcl-xL expression after contusion to the rat spinal cord. J. Neurotrauma18, 1267–1278 (2001). ArticleCASPubMed Google Scholar
Plunkett, J. A., Yu, C. G., Easton, J. M., Bethea, J. R. & Yezierski, R. P. Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp. Neurol.168, 144–154 (2001). ArticleCASPubMed Google Scholar
Abraham, K. E., McMillen, D. & Brewer, K. L. The effects of endogenous interleukin-10 on gray matter damage and the development of pain behaviors following excitotoxic spinal cord injury in the mouse. Neuroscience124, 945–952 (2004). ArticleCASPubMed Google Scholar
Bethea, J. R. et al. Systemically administered interleukin-10 reduces tumor necrosis factor-α production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma16, 851–863 (1999). ArticleCASPubMed Google Scholar
Aicher, S. A., Silverman, M. B., Winkler, C. W. & Bebo, B. F. Jr. Hyperalgesia in an animal model of multiple sclerosis. Pain110, 560–570 (2004). ArticleCASPubMed Google Scholar
Vartanian, T. K., Zamvil, S. S., Fox, E. & Sorensen, P. S. Neutralizing antibodies to disease-modifying agents in the treatment of multiple sclerosis. Neurology63, S42–S49 (2004). ArticleCASPubMed Google Scholar
Mahad, D. J., Howell, S. J. & Woodroofe, M. N. Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry72, 498–502 (2002). CASPubMedPubMed Central Google Scholar
Toms, R., Weiner, H. L. & Johnson, D. Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J. Neuroimmunol.30, 169–177 (1990). ArticleCASPubMed Google Scholar
Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19, 71–82 (2003). ArticleCASPubMed Google Scholar
Panes, J., Perry, M. & Granger, D. N. Leukocyte–endothelial cell adhesion: avenues for therapeutic intervention. Br. J. Pharmacol.126, 537–550 (1999). ArticleCASPubMedPubMed Central Google Scholar
Murphy, P. M. et al. International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev.52, 145–176 (2000). CASPubMed Google Scholar
Gilroy, D. W., Lawrence, T., Perretti, M. & Rossi, A. G. Inflammatory resolution: new opportunities for drug discovery. Nature Rev. Drug Discov.3, 401–416 (2004). A review that illustrates the concept of anti-inflammation and the endogenous control of the inflammatory response. ArticleCAS Google Scholar
Hannon, R. et al. Aberrant inflammatory responses and resistance to glucocorticoids in the annexin 1−/− mouse. FASEB J.17, 253–255 (2003). This study reports the initial description of the annexin 1 null mouse, and the impact on the host inflammatory response of removing this endogenous inhibitory mediator. ArticleCASPubMed Google Scholar
Malcangio, M. et al. A novel control mechanism based on GDNF modulation of somatostatin release from sensory neurones. FASEB J.16, 730–732 (2002). ArticleCASPubMed Google Scholar
Arita, M. et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med.201, 713–722 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pieretti, S., Di Giannuario, A., De Felice, M., Perretti, M. & Cirino, G. Stimulus-dependent specificity for annexin 1 inhibition of the inflammatory nociceptive response: the involvement of the receptor for formylated peptides. Pain109, 52–63 (2004). An important study that describes the effects of annexin 1 bioactive peptidomimetics in models of peripheral inflammatory pain. ArticleCASPubMed Google Scholar
Melzer, P., Savchenko, V. & McKanna, J. A. Microglia, astrocytes, and macrophages react differentially to central and peripheral lesions in the developing and mature rat whisker-to-barrel pathway: a study using immunohistochemistry for lipocortin1, phosphotyrosine, s100β, and mannose receptors. Exp. Neurol.168, 63–77 (2001). ArticleCASPubMed Google Scholar
Le, Y. et al. Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci.21, RC123 (2001). A comprehensive analysis of FPRL1 expression and function on microglia, with strong implications for Alzheimer's disease. ArticleCASPubMedPubMed Central Google Scholar
Harada, M. et al. N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem. Biophys. Res. Commun.324, 255–261 (2004). ArticleCASPubMed Google Scholar
Minghetti, L. et al. Down-regulation of microglial cyclo-oxygenase-2 and inducible nitric oxide synthase expression by lipocortin 1. Br. J. Pharmacol.126, 1307–1314 (1999). ArticleCASPubMedPubMed Central Google Scholar