Synaptic plasticity at hippocampal mossy fibre synapses (original) (raw)
Acsady, L., Kamondi, A., Sik, A., Freund, T. & Buzsaki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci.18, 3386–3403 (1998). ArticleCASPubMedPubMed Central Google Scholar
Henze, D. A., Urban, N. N. & Barrionuevo, G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience98, 407–427 (2000). ArticleCASPubMed Google Scholar
Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl Acad. Sci. USA93, 13304–13309 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jung, M. W. & McNaughton, B. L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus3, 165–182 (1993). ArticleCASPubMed Google Scholar
Dobrunz, L. E. & Stevens, C. F. Response of hippocampal synapses to natural stimulation patterns. Neuron22, 157–166 (1999). ArticleCASPubMed Google Scholar
Toth, K., Suares, G., Lawrence, J. J., Philips-Tansey, E. & McBain, C. J. Differential mechanisms of transmission at three types of mossy fiber synapse. J. Neurosci.20, 8279–8289 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.)472, 615–663 (1993). ArticleCAS Google Scholar
Lawrence, J. J., Grinspan, Z. M. & McBain, C. J. Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. J. Physiol. (Lond.)554, 175–193 (2004). ArticleCAS Google Scholar
Moore, K. A., Nicoll, R. A. & Schmitz, D. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc. Natl Acad. Sci. USA100, 14397–14402 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fedele, D. E. et al. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain128, 2383–2395 (2005). ArticlePubMed Google Scholar
Kukley, M., Schwan, M., Fredholm, B. B. & Dietrich, D. The role of extracellular adenosine in regulating mossy fiber synaptic plasticity. J. Neurosci.25, 2832–2837 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pin, J. P. & Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology34, 1–26 (1995). ArticleCASPubMed Google Scholar
Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. (Lond.)493, 447–455 (1996). ArticleCAS Google Scholar
Yokoi, M. et al. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science273, 645–647 (1996). ArticleCASPubMed Google Scholar
Toth, K. & McBain, C. J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nature Neurosci.1, 572–578 (1998). ArticleCASPubMed Google Scholar
Doherty, J. J. et al. Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J. Physiol. (Lond.)561, 395–401 (2004). ArticleCAS Google Scholar
Lanthorn, T. H., Ganong, A. H. & Cotman, C. W. 2-Amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus. Brain Res.290, 174–178 (1984). ArticleCASPubMed Google Scholar
Manzoni, O. J., Castillo, P. E. & Nicoll, R. A. Pharmacology of metabotropic glutamate receptors at the mossy fiber synapses of the guinea pig hippocampus. Neuropharmacology34, 965–971 (1995). ArticleCASPubMed Google Scholar
Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci.17, 7503–7522 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kamiya, H. & Ozawa, S. Dual mechanism for presynaptic modulation by axonal metabotropic glutamate receptor at the mouse mossy fibre-CA3 synapse. J. Physiol. (Lond.)518, 497–506 (1999). ArticleCAS Google Scholar
Scanziani, M., Salin, P. A., Vogt, K. E., Malenka, R. C. & Nicoll, R. A. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature385, 630–634 (1997). ArticleCASPubMed Google Scholar
Vogt, K. E. & Nicoll, R. A. Glutamate and γ-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc. Natl Acad. Sci. USA96, 1118–1122 (1999). ArticleCASPubMedPubMed Central Google Scholar
Monaghan, D. T. & Cotman, C. W. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res.252, 91–100 (1982). ArticleCASPubMed Google Scholar
Represa, A., Tremblay, E. & Ben-Ari, Y. Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience20, 739–748 (1987). ArticleCASPubMed Google Scholar
Darstein, M., Petralia, R. S., Swanson, G. T., Wenthold, R. J. & Heinemann, S. F. Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. J. Neurosci.23, 8013–8019 (2003). ArticleCASPubMedPubMed Central Google Scholar
Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature388, 182–186 (1997). ArticleCASPubMed Google Scholar
Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature388, 179–182 (1997). ArticleCASPubMed Google Scholar
Kamiya, H. & Ozawa, S. Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J. Physiol. (Lond.)523, 653–665 (2000). ArticleCAS Google Scholar
Schmitz, D., Frerking, M. & Nicoll, R. A. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron27, 327–338 (2000). ArticleCASPubMed Google Scholar
Vignes, M. et al. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology37, 1269–1277 (1998). ArticleCASPubMed Google Scholar
Contractor, A., Swanson, G. T., Sailer, A., O'Gorman, S. & Heinemann, S. F. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J. Neurosci.20, 8269–8278 (2000). ArticleCASPubMedPubMed Central Google Scholar
Engelman, H. S. & MacDermott, A. B. Presynaptic ionotropic receptors and control of transmitter release. Nature Rev. Neurosci.5, 135–145 (2004). ArticleCAS Google Scholar
Rodriguez-Moreno, A. & Sihra, T. S. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J. Physiol. (Lond.)557, 733–745 (2004). ArticleCAS Google Scholar
Ji, Z. & Staubli, U. Presynaptic kainate receptors play different physiological roles in mossy fiber and associational–commissural synapses in CA3 of hippocampus from adult rats. Neurosci. Lett.331, 71–74 (2002). ArticleCASPubMed Google Scholar
Schmitz, D., Mellor, J. & Nicoll, R. A. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science291, 1972–1976 (2001). ArticleCASPubMed Google Scholar
Contractor, A. et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2−/− mice. J. Neurosci.23, 422–429 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lauri, S. E. et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron32, 697–709 (2001). ArticleCASPubMed Google Scholar
Cossart, R. et al. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron29, 497–508 (2001). ArticleCASPubMed Google Scholar
Jiang, L., Xu, J., Nedergaard, M. & Kang, J. A kainate receptor increases the efficacy of GABAergic synapses. Neuron30, 503–513 (2001). ArticleCASPubMed Google Scholar
Delaney, A. J. & Jahr, C. E. Kainate receptors differentially regulate release at two parallel fiber synapses. Neuron36, 475–482 (2002). ArticleCASPubMed Google Scholar
Braga, M. F., Aroniadou-Anderjaska, V., Xie, J. & Li, H. Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J. Neurosci.23, 442–452 (2003). ArticleCASPubMedPubMed Central Google Scholar
Contractor, A., Swanson, G. & Heinemann, S. F. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron29, 209–216 (2001). ArticleCASPubMed Google Scholar
Breustedt, J. & Schmitz, D. Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses. J. Neurosci.24, 10093–10098 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kamiya, H., Ozawa, S. & Manabe, T. Kainate receptor-dependent short-term plasticity of presynaptic Ca2+ influx at the hippocampal mossy fiber synapses. J. Neurosci.22, 9237–9243 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mori-Kawakami, F., Kobayashi, K. & Takahashi, T. Developmental decrease in synaptic facilitation at the mouse hippocampal mossy fibre synapse. J. Physiol. (Lond.)553, 37–48 (2003). ArticleCAS Google Scholar
Lauri, S. E. et al. A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron39, 327–341 (2003). ArticleCASPubMed Google Scholar
Geiger, J. R. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflugers Arch.443, 491–501 (2002). ArticleCASPubMed Google Scholar
Geiger, J. R. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron28, 927–939 (2000). ArticleCASPubMed Google Scholar
Bischofberger, J., Geiger, J. R. & Jonas, P. Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J. Neurosci.22, 10593–10602 (2002). ArticleCASPubMedPubMed Central Google Scholar
Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron45, 405–417 (2005). ArticleCASPubMed Google Scholar
Harris, E. W. & Cotman, C. W. Long-term potentiation of guinea pig mossy fiber responses is not blocked by _N_-methyl-D-aspartate antagonists. Neurosci. Lett.70, 132–137 (1986). ArticleCASPubMed Google Scholar
Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science248, 1619–1624 (1990). ArticleCASPubMed Google Scholar
Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature376, 256–259 (1995). ArticleCASPubMed Google Scholar
Watanabe, M. et al. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur. J. Neurosci.10, 478–487 (1998). ArticleCASPubMed Google Scholar
Kakegawa, W., Tsuzuki, K., Yoshida, Y., Kameyama, K. & Ozawa, S. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Eur. J. Neurosci.20, 101–110 (2004). ArticlePubMed Google Scholar
Katsuki, H., Kaneko, S., Tajima, A. & Satoh, M. Separate mechanisms of long-term potentiation in two input systems to CA3 pyramidal neurons of rat hippocampal slices as revealed by the whole-cell patch-clamp technique. Neurosci. Res.12, 393–402 (1991). ArticleCASPubMed Google Scholar
Tong, G., Malenka, R. C. & Nicoll, R. A. Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity. Neuron16, 1147–1157 (1996). ArticleCASPubMed Google Scholar
Langdon, R. B., Johnson, J. W. & Barrionuevo, G. Posttetanic potentiation and presynaptically induced long-term potentiation at the mossy fiber synapse in rat hippocampus. J. Neurobiol.26, 370–385 (1995). ArticleCASPubMed Google Scholar
Jaffe, D. & Johnston, D. Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J. Neurophysiol.64, 948–960 (1990). ArticleCASPubMed Google Scholar
Urban, N. N. & Barrionuevo, G. Induction of Hebbian and non-Hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J. Neurosci.16, 4293–4299 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ito, I. & Sugiyama, H. Roles of glutamate receptors in long-term potentiation at hippocampal mossy fiber synapses. Neuroreport2, 333–336 (1991). ArticleCASPubMed Google Scholar
Castillo, P. E., Weisskopf, M. G. & Nicoll, R. A. The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron12, 261–269 (1994). ArticleCASPubMed Google Scholar
Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci.2, 625–633 (1999). ArticleCASPubMed Google Scholar
Bortolotto, Z. A. et al. Kainate receptors are involved in synaptic plasticity. Nature402, 297–301 (1999). ArticleCASPubMed Google Scholar
Mellor, J. & Nicoll, R. A. Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nature Neurosci.4, 125–126 (2001). ArticleCASPubMed Google Scholar
Williams, S. & Johnston, D. Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators. Neuron3, 583–588 (1989). ArticleCASPubMed Google Scholar
Kakegawa, W. et al. Postsynaptic expression of a new calcium pathway in hippocampal CA3 neurons and its influence on mossy fiber long-term potentiation. J. Neurosci.22, 4312–4320 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, J., Yeckel, M. F., Johnston, D. & Zucker, R. S. Photolysis of postsynaptic caged Ca2+ can potentiate and depress mossy fiber synaptic responses in rat hippocampal CA3 pyramidal neurons. J. Neurophysiol.91, 1596–1607 (2004). ArticlePubMed Google Scholar
Lei, S. et al. Depolarization-induced long-term depression at hippocampal mossy fiber–CA3 pyramidal neuron synapses. J. Neurosci.23, 9786–9795 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. G., Borst, J. G. & Sakmann, B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl Acad. Sci. USA95, 4720–4725 (1998). ArticleCASPubMedPubMed Central Google Scholar
Day, N. C. et al. Distribution of α1A, α1B and α1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience71, 1013–1024 (1996). ArticleCASPubMed Google Scholar
Breustedt, J., Vogt, K. E., Miller, R. J., Nicoll, R. A. & Schmitz, D. α1E-Containing Ca2+ channels are involved in synaptic plasticity. Proc. Natl Acad. Sci. USA100, 12450–12455 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dietrich, D. et al. Functional specialization of presynaptic CaV2.3 Ca2+ channels. Neuron39, 483–496 (2003). ArticleCASPubMed Google Scholar
Gasparini, S., Kasyanov, A. M., Pietrobon, D., Voronin, L. L. & Cherubini, E. Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J. Neurosci.21, 8715–8721 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bashir, Z. I. et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature363, 347–350 (1993). ArticleCASPubMed Google Scholar
Manzoni, O. J., Weisskopf, M. G. & Nicoll, R. A. MCPG antagonizes metabotropic glutamate receptors but not long-term potentiation in the hippocampus. Eur. J. Neurosci.6, 1050–1054 (1994). ArticleCASPubMed Google Scholar
Hsia, A. Y. et al. Evidence against a role for metabotropic glutamate receptors in mossy fiber LTP: the use of mutant mice and pharmacological antagonists. Neuropharmacology34, 1567–1572 (1995). ArticleCASPubMed Google Scholar
Conquet, F. et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature372, 237–243 (1994). ArticleCASPubMed Google Scholar
Sokolov, M. V. et al. Associative mossy fibre LTP induced by pairing presynaptic stimulation with postsynaptic hyperpolarization of CA3 neurons in rat hippocampal slice. Eur. J. Neurosci.17, 1425–1437 (2003). ArticlePubMed Google Scholar
Schmitz, D., Mellor, J., Breustedt, J. & Nicoll, R. A. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nature Neurosci.6, 1058–1063 (2003). ArticleCASPubMed Google Scholar
Contractor, A. et al. Trans-synaptic Eph receptor–ephrin signaling in hippocampal mossy fiber LTP. Science296, 1864–1869 (2002). ArticleCASPubMed Google Scholar
Staubli, U., Larson, J. & Lynch, G. Mossy fiber potentiation and long-term potentiation involve different expression mechanisms. Synapse5, 333–335 (1990). ArticleCASPubMed Google Scholar
Xiang, Z., Greenwood, A. C., Kairiss, E. W. & Brown, T. H. Quantal mechanism of long-term potentiation in hippocampal mossy-fiber synapses. J. Neurophysiol.71, 2552–2556 (1994). ArticleCASPubMed Google Scholar
Maeda, T., Kaneko, S., Akaike, A. & Satoh, M. Direct evidence for increase in excitatory amino acids release during mossy fiber LTP in rat hippocampal slices as revealed by the patch sensor methods. Neurosci. Lett.224, 103–106 (1997). ArticleCASPubMed Google Scholar
Kawamura, Y. et al. Glutamate release increases during mossy–CA3 LTP but not during Schaffer–CA1 LTP. Eur. J. Neurosci.19, 1591–1600 (2004). ArticlePubMed Google Scholar
Lopez-Garcia, J. C., Arancio, O., Kandel, E. R. & Baranes, D. A presynaptic locus for long-term potentiation of elementary synaptic transmission at mossy fiber synapses in culture. Proc. Natl Acad. Sci. USA93, 4712–4717 (1996). ArticleCASPubMedPubMed Central Google Scholar
Reid, C. A., Dixon, D. B., Takahashi, M., Bliss, T. V. & Fine, A. Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses. J. Neurosci.24, 3618–3626 (2004). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y. Y., Li, X. C. & Kandel, E. R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell79, 69–79 (1994). ArticleCASPubMed Google Scholar
Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A. & Nicoll, R. A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science265, 1878–1882 (1994). ArticleCASPubMed Google Scholar
Huang, Y. Y. et al. A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell83, 1211–1222 (1995). ArticleCASPubMed Google Scholar
Worley, P. F., Baraban, J. M., De Souza, E. B. & Snyder, S. H. Mapping second messenger systems in the brain: differential localizations of adenylate cyclase and protein kinase C. Proc. Natl Acad. Sci. USA83, 4053–4057 (1986). ArticleCASPubMedPubMed Central Google Scholar
Xia, Z. G., Refsdal, C. D., Merchant, K. M., Dorsa, D. M. & Storm, D. R. Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron6, 431–443 (1991). ArticleCASPubMed Google Scholar
Glatt, C. E. & Snyder, S. H. Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature361, 536–538 (1993). ArticleCASPubMed Google Scholar
Villacres, E. C., Wong, S. T., Chavkin, C. & Storm, D. R. Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J. Neurosci.18, 3186–3194 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation. J. Neurosci.23, 9710–9718 (2003). ArticleCASPubMedPubMed Central Google Scholar
Salin, P. A., Malenka, R. C. & Nicoll, R. A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron16, 797–803 (1996). ArticleCASPubMed Google Scholar
Storm, D. R., Hansel, C., Hacker, B., Parent, A. & Linden, D. J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron20, 1199–1210 (1998). ArticleCASPubMed Google Scholar
Castro-Alamancos, M. A. & Calcagnotto, M. E. Presynaptic long-term potentiation in corticothalamic synapses. J. Neurosci.19, 9090–9097 (1999). ArticleCASPubMedPubMed Central Google Scholar
Castillo, P. E. et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature388, 590–593 (1997). ArticleCASPubMed Google Scholar
Castillo, P. E., Schoch, S., Schmitz, F., Sudhof, T. C. & Malenka, R. C. RIM1α is required for presynaptic long-term potentiation. Nature415, 327–330 (2002). ArticleCASPubMed Google Scholar
Beaumont, V. & Zucker, R. S. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic _I_h channels. Nature Neurosci.3, 133–141 (2000). ArticleCASPubMed Google Scholar
Mellor, J., Nicoll, R. A. & Schmitz, D. Presynaptic _I_h channels mediate hippocampal mossy fiber long-term potentiation. Science295, 143–147 (2002). ArticleCASPubMed Google Scholar
Huang, C. C. & Hsu, K. S. Reexamination of the role of hyperpolarization-activated cation channels in short- and long-term plasticity at hippocampal mossy fiber synapses. Neuropharmacology44, 968–981 (2003). ArticleCASPubMed Google Scholar
Chevaleyre, V. & Castillo, P. E. Assessing the role of _I_h channels in synaptic transmission and mossy fiber LTP. Proc. Natl Acad. Sci. USA99, 9538–9543 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kamiya, H., Umeda, K., Ozawa, S. & Manabe, T. Presynaptic Ca2+ entry is unchanged during hippocampal mossy fiber long-term potentiation. J. Neurosci.22, 10524–10528 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, K., Manabe, T. & Takahashi, T. Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science273, 648–650 (1996). ArticleCASPubMed Google Scholar
Tzounopoulos, T., Janz, R., Sudhof, T. C., Nicoll, R. A. & Malenka, R. C. A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron21, 837–845 (1998). ArticleCASPubMed Google Scholar
Kobayashi, K., Manabe, T. & Takahashi, T. Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fibre–CA3 synapse. Eur. J. Neurosci.11, 1633–1638 (1999). ArticleCASPubMed Google Scholar
Huang, C. C., Chen, Y. L., Liang, Y. C. & Hsu, K. S. Role for cAMP and protein phosphatase in the presynaptic expression of mouse hippocampal mossy fibre depotentiation. J. Physiol. (Lond.)543, 767–778 (2002). ArticleCAS Google Scholar
Domenici, M. R., Berretta, N. & Cherubini, E. Two distinct forms of long-term depression coexist at the mossy fiber-CA3 synapse in the hippocampus during development. Proc. Natl Acad. Sci. USA95, 8310–8315 (1998). ArticleCASPubMedPubMed Central Google Scholar
Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science279, 1368–1370 (1998). ArticleCASPubMed Google Scholar
Lei, S. & McBain, C. J. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron33, 921–933 (2002). ArticleCASPubMed Google Scholar
Lei, S. & McBain, C. J. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J. Neurosci.24, 2112–2121 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pelkey, K. A., Lavezzari, G., Racca, C., Roche, K. W. & McBain, C. J. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron46, 89–102 (2005). ArticleCASPubMed Google Scholar
Alle, H., Jonas, P. & Geiger, J. R. PTP and LTP at a hippocampal mossy fiber–interneuron synapse. Proc. Natl Acad. Sci. USA98, 14708–14713 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ramón y Cajal, S. Histology of the Nervous System of Man and Vertebrates (trans. Swanson, N. & Swanson, L. W.) (Oxford Univ. Press, 1995; first published 1899). Google Scholar