The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness (original) (raw)
Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell92, 573–585 (1998). Describes the discovery of orexins and their two target receptors, the determination of their exact structures and the evidence that the peptides stimulate short-term food intake. ArticleCASPubMed Google Scholar
Haynes, A. C. et al. Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice. Regul. Pept.104, 153–159 (2002). ArticleCASPubMed Google Scholar
Haynes, A. C. et al. A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul. Pept.96, 45–51 (2000). ArticleCASPubMed Google Scholar
Edwards, C. M. et al. The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J. Endocrinol.160, R7–R12 (1999). ArticleCASPubMed Google Scholar
Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med.9, 991–997 (2000). ArticleCAS Google Scholar
Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron27, 469–474 (2000). References5–6provide evidence that, in most cases, human narcolepsy–cataplexy is probably a neurodegenerative disease of orexin neurons. ArticleCASPubMedPubMed Central Google Scholar
Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell98, 437–451 (1999). ArticleCASPubMed Google Scholar
Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell98, 365–376 (1999). References7–8provide evidence that a deficiency of orexin or the orexin receptor 2 results in a narcoleptic phenotype in mice and dogs. ArticleCASPubMed Google Scholar
Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron30, 345–354 (2001). ArticleCASPubMed Google Scholar
Boutrel, B. et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc. Natl Acad. Sci. USA102, 19168–19173 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yamanaka, A. et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron38, 701–713 (2003). Shows that orexin neurons are directly regulated by glucose, leptin and ghrelin, and are necessary for augmenting arousal during fasting. ArticleCASPubMed Google Scholar
Akiyama, M. et al. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur. J. Neurosci.20, 3054–3062 (2004). ArticlePubMed Google Scholar
Mieda, M. et al. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J. Neurosci.24, 10493–10501 (2004). References12–13show that orexin neurons convey an efferent signal from a putative food-entrainable oscillator to increase wakefulness and locomotor activity. ArticleCASPubMedPubMed Central Google Scholar
Sakurai, T. et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron46, 297–308 (2005). ArticleCASPubMed Google Scholar
Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol.494, 845–861 (2006). References14–15map the neuronal input to orexin neurons. ArticlePubMedPubMed Central Google Scholar
Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature437, 556–559 (2005). ArticleCASPubMed Google Scholar
Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci.26, 398–405 (2006). References16–17demonstrate roles for orexin neurons and ventral tegmental orexin receptors in reward-based learning and memory. ArticleCASPubMedPubMed Central Google Scholar
Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet355, 39–40 (2000). ArticleCASPubMed Google Scholar
Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol.59, 1553–1562 (2002). ArticlePubMed Google Scholar
American Academy of Sleep Medicine, Diagnostic Classification Steering Committee. The International Classification of Sleep Disorders: Diagnostic and Coding Manual. (American Academy of Sleep Medicine, 2005).
Crocker, A. et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology65, 1184–1188 (2005). ArticleCASPubMed Google Scholar
Kadotani, H., Faraco, J. & Mignot, E. Genetic studies in the sleep disorder narcolepsy. Genome Res.8, 427–434 (1998). ArticleCASPubMed Google Scholar
Hagan, J. J. et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA96, 10911–10916 (1999). ArticleCASPubMedPubMed Central Google Scholar
Date, Y. et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl Acad. Sci. USA96, 748–753 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nambu, T. et al. Distribution of orexin neurons in the adult rat brain. Brain Res.827, 243–260 (1999). ArticleCASPubMed Google Scholar
Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol.435, 6–25 (2001). Comprehensive report on the distribution of orexin receptor mRNAs in the rat brain. ArticleCASPubMed Google Scholar
Horvath, T. L. et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol.415, 145–159 (1999). ArticleCASPubMed Google Scholar
Nakamura, T. et al. Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res.873, 181–187 (2000). ArticleCASPubMed Google Scholar
Liu, R. J., van den Pol, A. N. & Aghajanian, G. K. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J. Neurosci.22, 9453–9464 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brown, R. E., Sergeeva, O. A., Eriksson, K. S. & Haas, H. L. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J. Neurosci.22, 8850–8859 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yamanaka, A. et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem. Biophys. Res. Commun.290, 1237–1245 (2002). ArticleCAS Google Scholar
Vanni-Mercier, G., Sakai, K. & Jouvet, M. Neurons specifiques de l'eveil dans l'hypothalamus posterieur du chat. C. R. Acad. Sci., III298, 195–200 (1984). CAS Google Scholar
Eggermann, E. et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience108, 177–181 (2001). ArticleCASPubMed Google Scholar
Alam, M. N., Szymusiak, R., Gong, H., King, J. & McGinty, D. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J. Physiol.521, 679–690 (1999). ArticleCASPubMedPubMed Central Google Scholar
Shouse, M. N. & Siegel, J. M. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res.571, 50–63 (1992). ArticleCASPubMed Google Scholar
Xi, M., Morales, F. R. & Chase, M. H. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res.901, 259–264 (2001). ArticleCASPubMed Google Scholar
Takahashi, K., Koyama, Y., Kayama, Y. & Yamamoto, M. Effects of orexin on the laterodorsal tegmental neurones. Psychiatry Clin. Neurosci.56, 335–336 (2002). ArticleCASPubMed Google Scholar
Takakusaki, K. et al. Orexinergic projections to the midbrain mediate alternation of emotional behavioral states from locomotion to cataplexy. J. Physiol.568, 1003–1020 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huang, Z. L. et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. USA98, 9965–9970 (2001). ArticleCASPubMedPubMed Central Google Scholar
Willie, J. T., Chemelli, R. M., Sinton, C. M. & Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci.24, 429–458 (2001). ArticleCASPubMed Google Scholar
Willie, J. T. et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron38, 715–730 (2003). Demonstrates distinct roles of each orexin receptor subtype in the regulation of sleep and wakefulness. ArticleCASPubMed Google Scholar
Mieda, M. et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl Acad. Sci. USA101, 4649–4654 (2004). Demonstrates rescue of the narcolepsy–cataplexy phenotype of orexin neuron-ablated mice by genetic and pharmacological means, providing evidence that receptor agonists might be of potential value for treating human narcolepsy. ArticleCASPubMedPubMed Central Google Scholar
Yoshida, Y. et al. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light–dark cycle and sleep-wake activities. Eur. J. Neurosci.14, 1075–1081 (2001). ArticleCASPubMed Google Scholar
Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron46, 787–798 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lee, M. G., Hassani, O. K. & Jones, B. E. Discharge of identified orexin/hypocretin neurons across the sleep–waking cycle. J. Neurosci.25, 6716–6720 (2005). References46–47reportin vivoactivity of orexin neurons during states of sleep and wakefulness. ArticleCASPubMedPubMed Central Google Scholar
Schuld, A., Hebebrand, J., Geller, F. & Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet355, 1274–1275 (2000). ArticleCASPubMed Google Scholar
Hara, J., Yanagisawa, M. & Sakurai, T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci. Lett.380, 239–242 (2005). ArticleCASPubMed Google Scholar
Yamada, H., Okumura, T., Motomura, W., Kobayashi, Y. & Kohgo, Y. Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem. Biophys. Res. Commun.267, 527–531 (2000). ArticleCASPubMed Google Scholar
Yamanaka, A. et al. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res.24, 404–409 (2000). Article Google Scholar
Muroya, S. et al. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur. J. Neurosci.19, 1524–1534 (2004). ArticlePubMed Google Scholar
Thorpe, A. J. & Kotz, C. M. Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res.1050, 156–162 (2005). ArticleCASPubMed Google Scholar
Baldo, B. A. et al. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur. J. Neurosci.19, 376–386 (2004). ArticlePubMed Google Scholar
Challet, E., Pevet, P. & Malan, A. Effect of prolonged fasting and subsequent refeeding on free-running rhythms of temperature and locomotor activity in rats. Behav. Brain. Res.84, 275–284 (1997). ArticleCASPubMed Google Scholar
Itoh, T. et al. Effects of 24-hr fasting on methamphetamine- and apomorphine-induced locomotor activities, and on monoamine metabolism in mouse corpus striatum and nucleus accumbens. Pharmacol. Biochem. Behav.35, 391–396 (1990). ArticleCASPubMed Google Scholar
Mieda, M., Williams, S. C., Richardson, J. A., Tanaka, K. & Yanagisawa, M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl Acad. Sci. USA103, 12150–12155 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gooley, J. J., Schomer, A. & Saper, C. B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nature Neurosci.9, 398–407 (2006). ArticleCASPubMed Google Scholar
Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M. & Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol.277, R1780–R1785 (1999). CASPubMed Google Scholar
Kayaba, Y. et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.285, R581–R593 (2003). ArticlePubMed Google Scholar
Zhang, W., Sakurai, T., Fukuda, Y. & Kuwaki, T. Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.290, R1654–R1663 (2006). ArticleCASPubMed Google Scholar
Lubkin, M. & Stricker-Krongrad, A. Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Commun.253, 241–245 (1998). ArticleCASPubMed Google Scholar
Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron49, 589–601 (2006). ArticleCASPubMed Google Scholar
Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci.23, 3106–3111 (2003). ArticleCASPubMedPubMed Central Google Scholar
Guilleminault, C., Carskadon, M. & Dement, W. C. On the treatment of rapid eye movement narcolepsy. Arch. Neurol.30, 90–93 (1974). ArticleCASPubMed Google Scholar
Kuru, M. et al. Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport11, 1977–1980 (2000). ArticleCASPubMed Google Scholar
Sakamoto, F., Yamada, S. & Ueta, Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul. Pept.118, 183–191 (2004). ArticleCASPubMed Google Scholar
Winsky-Sommerer, R. et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci.24, 11439–11448 (2004). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Gao, X. B., Sakurai, T. & van den Pol, A. N. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron36, 1169–1181 (2002). ArticleCASPubMed Google Scholar
Yamanaka, A., Muraki, Y., Tsujino, N., Goto, K. & Sakurai, T. Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem. Biophys. Res. Commun.303, 120–129 (2003). ArticleCASPubMed Google Scholar
Yamanaka, A. et al. Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J. Neurophysiol.96, 284–298 (2006). ArticleCASPubMed Google Scholar
Grivel, J. et al. The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation. J. Neurosci.25, 4127–4130 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tsujino, N. et al. Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J. Neurosci.25, 7459–7469 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liu, Z. W. & Gao, X. B. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J. Neurophysiol.97, 837–848 (2007). ArticleCASPubMed Google Scholar
Burdakov, D., Gerasimenko, O. & Verkhratsky, A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J. Neurosci.25, 2429–2433 (2005). ArticleCASPubMedPubMed Central Google Scholar
Burdakov, D. et al. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron50, 711–722 (2006). Shows a novel mechanism by which glucose regulates the activity of orexin neurons. ArticleCASPubMed Google Scholar
Cai, X. J. et al. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes50, 105–112 (2001). ArticleCASPubMed Google Scholar
Williams, G. et al. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav.74, 683–701 (2001). ArticleCASPubMed Google Scholar
Agnati, L. F., Zoli, M., Stromberg, I. & Fuxe, K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience69, 711–726 (1995). ArticleCASPubMed Google Scholar
Elias, C. F. et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol.402, 442–459 (1998). ArticleCASPubMed Google Scholar
Takenoya, F. et al. Neuronal interactions between galanin-like-peptide- and orexin- or melanin-concentrating hormone-containing neurons. Regul. Pept.126, 79–83 (2005). ArticleCASPubMed Google Scholar
Kayaba, Y. et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.285, R581–R593 (2003). ArticlePubMed Google Scholar
Shiromani, P. J., Armstrong, D. M., Berkowitz, A., Jeste, D. V. & Gillin, J. C. Distribution of choline acetyltransferase immunoreactive somata in the feline brainstem: implications for REM sleep generation. Sleep11, 1–16 (1988). ArticleCASPubMed Google Scholar
Berthoud, H. R. Mind versus metabolism in the control of food intake and energy balance. Physiol. Behav.81, 781–793 (2004). ArticleCASPubMed Google Scholar
Reid, M. S. et al. Neuropharmacological characterization of basal forebrain cholinergic stimulated cataplexy in narcoleptic canines. Exp. Neurol.151, 89–104 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sherin, J. E., Elmquist, J. K., Torrealba, F. & Saper, C. B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci.18, 4705–4721 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lu, J. et al. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J. Neurosci.22, 4568–4576 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xie, X. et al. GABAB receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J. Physiol.574, 399–414 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leak, R. K. & Moore, R. Y. Topographic organization of suprachiasmatic nucleus projection neurons. J. Comp. Neurol.433, 312–334 (2001). ArticleCASPubMed Google Scholar
Muraki, Y. et al. Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J. Neurosci.24, 7159–7166 (2004). ArticleCASPubMedPubMed Central Google Scholar
Morairty, S., Rainnie, D., McCarley, R. & Greene, R. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine:a new mechanism for sleep promotion. Neuroscience123, 451–457 (2004). ArticleCASPubMed Google Scholar
Arrigoni, E., Chamberlin, N. L., Saper, C. B. & McCarley, R. W. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience140, 403–413 (2006). ArticleCASPubMed Google Scholar
Huang, Z. L. et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature Neurosci.8, 858–859 (2005). ArticleCASPubMed Google Scholar
Sakurai, T. Roles of orexins and orexin receptors in central regulation of feeding behavior and energy homeostasis. CNS Neurol. Disord. Drug Targets5, 313–325 (2006). ArticleCASPubMed Google Scholar
Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci.24, 726–731 (2001). ArticleCASPubMed Google Scholar
Gallopin, T. et al. Identification of sleep-promoting neurons in vitro. Nature404, 992–995 (2000). ArticleCASPubMed Google Scholar
de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA95, 322–327 (1998). Describes the independent discovery of the transcript that encodes orexins, the prediction that two peptides are encoded by the transcript, and the detection of the peptides in dense-core vesicles at synapses. ArticleCASPubMedPubMed Central Google Scholar
Zhu, Y. et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and-insensitive G-proteins. J. Pharmacol Sci.92, 259–266 (2003). ArticleCASPubMed Google Scholar
Zeitzer, J. M., Nishino, S. & Mignot, E. The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interventions. Trends Pharmacol. Sci.27, 368–374 (2006). ArticleCASPubMed Google Scholar
Davis, M. & Whalen, P. The amygdala: vigilance and emotion. Mol. Psychiat.6, 13–34 (2001). ArticleCAS Google Scholar
LeDoux, J. The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol.23, 727–738 (2003). ArticlePubMed Google Scholar
Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron48, 175–187 (2005). ArticleCASPubMed Google Scholar
Acuna-Goycolea, C. & van den Pol, A. N. Glucagon-like peptide 1 excites hypocretin/orexin neurons by direct and indirect mechanisms: implications for viscera-mediated arousal. J. Neurosci.24, 8141–8152 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wollmann, G., Acuna-Goycolea, C. & van den Pol, A. N. Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors. J. Neurophysiol.94, 2195–2206 (2005). ArticleCASPubMed Google Scholar
Fu, L. Y., Acuna-Goycolea, C. & van den Pol, A. N. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J. Neurosci.24, 8741–8751 (2004). ArticleCASPubMedPubMed Central Google Scholar
Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996). Google Scholar
Brisbare-Roch, C. et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nature Med.13, 150–155 (2007). ArticleCASPubMed Google Scholar