A new neural framework for visuospatial processing (original) (raw)
Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982). Google Scholar
Mishkin, M., Ungerleider, L. G. & Macko, K. Object vision and spatial vision: two cortical pathways. Trends Neurosci.6, 414–417 (1983). Article Google Scholar
Macko, K. A. et al. Mapping the primate visual system with [2–14C]deoxyglucose. Science218, 394–397 (1982). ArticleCASPubMed Google Scholar
Milner, A. D. et al. Perception and action in 'visual form agnosia'. Brain114, 405–428 (1991). ArticlePubMed Google Scholar
James, T. W., Culham, J., Humphrey, G. K., Milner, A. D. & Goodale, M. A. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain126, 2463–2475 (2003). ArticlePubMed Google Scholar
Goodale, M. A., Milner, A. D., Jakobson, L. S. & Carey, D. P. A neurological dissociation between perceiving objects and grasping them. Nature349, 154–156 (1991). ArticleCASPubMed Google Scholar
Gentilucci, M. & Rizzolatti, G. in Vision and Action (ed. Goodale, M. A.) 147–162 (Ablex, New York, 1990). Google Scholar
Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci.15, 20–25 (1992). ArticleCASPubMed Google Scholar
Read, J. C., Phillipson, G. P., Serrano-Pedraza, I., Milner, A. D. & Parker, A. J. Stereoscopic vision in the absence of the lateral occipital cortex. PLoS ONE5, e12608 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Mishkin, M. in Exploring Brain Functions: Models in Neuroscience (eds Poggio, T. & Glaser, D.) 113–126 (Wiley, 1993). Google Scholar
Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev.114, 340–375 (2007). ArticlePubMedPubMed Central Google Scholar
Creem, S. H. & Proffitt, D. R. Defining the cortical visual systems: “what”, “where”, and “how”. Acta Psychol.107, 43–68 (2001). ArticleCAS Google Scholar
Vann, S. D., Aggleton, J. P. & Maguire, E. A. What does the retrosplenial cortex do? Nature Rev. Neurosci.10, 792–802 (2009). ArticleCAS Google Scholar
Aguirre, G. K. & D'Esposito, M. Topographical disorientation: a synthesis and taxonomy. Brain122, 1613–1628 (1999). An excellent review of topographical disorientation, a disorder that occurs with damage to the regions along the parieto–medial temporal pathway. It is notable because the particular forms of topographical disorientation that result from damage to these regions provides clues to their function. ArticlePubMed Google Scholar
Galletti, C. et al. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur. J. Neurosci.13, 1572–1588 (2001). ArticleCASPubMed Google Scholar
Galletti, C., Fattori, P., Gamberini, M. & Kutz, D. F. The cortical visual area V6: brain location and visual topography. Eur. J. Neurosci.11, 3922–3936 (1999). ArticleCASPubMed Google Scholar
Colby, C. L., Gattass, R., Olson, C. R. & Gross, C. G. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J. Comp. Neurol.269, 392–413 (1988). ArticleCASPubMed Google Scholar
Rozzi, S. et al. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb. Cortex16, 1389–1417 (2006). A broad survey of the anatomical connectivity across the IPL, providing evidence for the differential connectivity of rIPL and cIPL and the emergence of the parieto–medial temporal pathway from cIPL. ArticlePubMed Google Scholar
Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol.299, 421–445 (1990). ArticleCASPubMed Google Scholar
Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol.287, 422–445 (1989). ArticleCASPubMed Google Scholar
Schall, J. D., Morel, A., King, D. J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci.15, 4464–4487 (1995). This provides key anatomical evidence for the connections between the posterior parietal cortex and the prefrontal cortex. ArticleCASPubMedPubMed Central Google Scholar
Funahashi, S. Prefrontal cortex and working memory processes. Neuroscience139, 251–261 (2006). ArticleCASPubMed Google Scholar
Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science279, 1347–1351 (1998). ArticleCASPubMed Google Scholar
Curtis, C. E. Prefrontal and parietal contributions to spatial working memory. Neuroscience139, 173–180 (2006). ArticleCASPubMed Google Scholar
Matelli, M., Govoni, P., Galletti, C., Kutz, D. F. & Luppino, G. Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol.402, 327–352 (1998). ArticleCASPubMed Google Scholar
Gamberini, M. et al. Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J. Comp. Neurol.513, 622–642 (2009). A detailed recent neuroanatomical tracing study showing the involvement of V6Ad within the parieto–premotor pathway. ArticlePubMed Google Scholar
Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nature Rev. Neurosci.9, 856–869 (2008). ArticleCAS Google Scholar
Galletti, C., Battaglini, P. P. & Fattori, P. Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey. Eur. J. Neurosci.3, 452–461 (1991). ArticlePubMed Google Scholar
Galletti, C., Battaglini, P. P. & Fattori, P. Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. Eur. J. Neurosci.7, 2486–2501 (1995). ArticleCASPubMed Google Scholar
Galletti, C., Fattori, P., Kutz, D. F. & Battaglini, P. P. Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. Eur. J. Neurosci.9, 410–413 (1997). ArticleCASPubMed Google Scholar
Duhamel, J. R., Colby, C. L. & Goldberg, M. E. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol.79, 126–136 (1998). ArticleCASPubMed Google Scholar
Colby, C. L. & Duhamel, J. R. Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia29, 517–537 (1991). ArticleCASPubMed Google Scholar
Fattori, P., Gamberini, M., Kutz, D. F. & Galletti, C. 'Arm-reaching' neurons in the parietal area V6A of the macaque monkey. Eur. J. Neurosci.13, 2309–2313 (2001). ArticleCASPubMed Google Scholar
Fattori, P., Kutz, D. F., Breveglieri, R., Marzocchi, N. & Galletti, C. Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. Eur. J. Neurosci.22, 956–972 (2005). ArticlePubMed Google Scholar
Fattori, P. et al. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. J. Neurosci.29, 1928–1936 (2009). ArticlePubMedPubMed Central Google Scholar
Fattori, P. et al. The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J. Neurosci.30, 342–349 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rockland, K. S. & Van Hoesen, G. W. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb. Cortex9, 232–237 (1999). ArticleCASPubMed Google Scholar
Ding, S. L., Van Hoesen, G. & Rockland, K. S. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J. Comp. Neurol.425, 510–530 (2000). ArticleCASPubMed Google Scholar
Pandya, D. N. & Seltzer, B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol.204, 196–210 (1982). ArticleCASPubMed Google Scholar
Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol.287, 393–421 (1989). ArticleCASPubMed Google Scholar
Vogt, B. A. & Pandya, D. N. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol.262, 271–289 (1987). ArticleCASPubMed Google Scholar
Morris, R., Pandya, D. N. & Petrides, M. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol.407, 183–192 (1999). ArticleCASPubMed Google Scholar
Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol.466, 48–79 (2003). ArticlePubMed Google Scholar
Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: III. Cortical efferents. J. Comp. Neurol.502, 810–833 (2007). ArticlePubMed Google Scholar
Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol.493, 479–509 (2005). ArticlePubMed Google Scholar
O'Mara, S. M., Rolls, E. T., Berthoz, A. & Kesner, R. P. Neurons responding to whole-body motion in the primate hippocampus. J. Neurosci.14, 6511–6523 (1994). ArticleCASPubMedPubMed Central Google Scholar
Robertson, R. G., Rolls, E. T., Georges-Francois, P. & Panzeri, S. Head direction cells in the primate pre-subiculum. Hippocampus9, 206–219 (1999). ArticleCASPubMed Google Scholar
Bartsch, T. et al. Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science328, 1412–1415 (2010). ArticleCASPubMed Google Scholar
Margulies, D. S. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl Acad. Sci. USA106, 20069–20074 (2009). A broad survey of the functional connectivity of the precuneus. Provides critical converging evidence for the existence of the parieto–medial temporal pathway in humans. ArticleCASPubMedPubMed Central Google Scholar
Caminiti, R. et al. Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective. Eur. J. Neurosci.31, 2320–2340 (2010). ArticlePubMedPubMed Central Google Scholar
Vincent, J. L., Kahn, I., Van Essen, D. C. & Buckner, R. L. Functional connectivity of the macaque posterior parahippocampal cortex. J. Neurophysiol.103, 793–800 (2010). ArticlePubMed Google Scholar
Rushworth, M. F., Behrens, T. E. & Johansen-Berg, H. Connection patterns distinguish 3 regions of human parietal cortex. Cereb. Cortex16, 1418–1430 (2006). ArticleCASPubMed Google Scholar
Culham, J. C. & Kanwisher, N. G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol.11, 157–163 (2001). ArticleCASPubMed Google Scholar
Boussaoud, D., Ungerleider, L. G. & Desimone, R. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol.296, 462–495 (1990). ArticleCASPubMed Google Scholar
Phinney, R. E. & Siegel, R. M. Speed selectivity for optic flow in area 7a of the behaving macaque. Cereb. Cortex10, 413–421 (2000). ArticleCASPubMed Google Scholar
Duffy, C. J. MST neurons respond to optic flow and translational movement. J. Neurophysiol.80, 1816–1827 (1998). ArticleCASPubMed Google Scholar
Andersen, R. A., Shenoy, K. V., Snyder, L. H., Bradley, D. C. & Crowell, J. A. The contributions of vestibular signals to the representations of space in the posterior parietal cortex. Ann. NY Acad. Sci.871, 282–292 (1999). ArticleCASPubMed Google Scholar
Georgieva, S., Peeters, R., Kolster, H., Todd, J. T. & Orban, G. A. The processing of three-dimensional shape from disparity in the human brain. J. Neurosci.29, 727–742 (2009). ArticleCASPubMedPubMed Central Google Scholar
Genovesio, A. & Ferraina, S. Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J. Neurophysiol.91, 2670–2684 (2004). ArticlePubMed Google Scholar
Orban, G. A., Janssen, P. & Vogels, R. Extracting 3D structure from disparity. Trends Neurosci.29, 466–473 (2006). ArticleCASPubMed Google Scholar
Verdon, V., Schwartz, S., Lovblad, K. O., Hauert, C. A. & Vuilleumier, P. Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain133, 880–894 (2009). ArticlePubMed Google Scholar
Medina, J. et al. Neural substrates of visuospatial processing in distinct reference frames: evidence from unilateral spatial neglect. J. Cogn. Neurosci.21, 2073–2084 (2009). ArticlePubMedPubMed Central Google Scholar
Hillis, A. E. et al. Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J. Neurosci.25, 3161–3167 (2005). ArticleCASPubMedPubMed Central Google Scholar
Konen, C. S. & Kastner, S. Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J. Neurosci.28, 8361–8375 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rawley, J. B. & Constantinidis, C. Neural correlates of learning and working memory in the primate posterior parietal cortex. Neurobiol. Learn. Mem.91, 129–138 (2009). ArticlePubMedPubMed Central Google Scholar
Friedman, H. R. & Goldman-Rakic, P. S. Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J. Neurosci.14, 2775–2788 (1994). ArticleCASPubMedPubMed Central Google Scholar
Chafee, M. V. & Goldman-Rakic, P. S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol.79, 2919–2940 (1998). ArticleCASPubMed Google Scholar
Chafee, M. V. & Goldman-Rakic, P. S. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol.83, 1550–1566 (2000). This reinforces the functional relevance of the parieto–prefrontal pathway by showing the reciprocal effect of inactivation in the posterior parietal and prefrontal cortices. ArticleCASPubMed Google Scholar
Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature428, 751–754 (2004). ArticleCASPubMed Google Scholar
Sheremata, S. L., Bettencourt, K. C. & Somers, D. C. Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J. Neurosci.30, 12581–12588 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y. & Chun, M. M. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature440, 91–95 (2006). ArticleCASPubMed Google Scholar
van Asselen, M. et al. Object-location memory: a lesion-behavior mapping study in stroke patients. Brain Cogn.71, 287–294 (2009). ArticlePubMed Google Scholar
Ravizza, S. M., Behrmann, M. & Fiez, J. A. Right parietal contributions to verbal working memory: spatial or executive? Neuropsychologia43, 2057–2067 (2005). ArticlePubMed Google Scholar
Pierrot-Deseilligny, C., Ploner, C. J., Muri, R. M., Gaymard, B. & Rivaud-Pechoux, S. Effects of cortical lesions on saccadic: eye movements in humans. Ann. NY Acad. Sci.956, 216–229 (2002). ArticlePubMed Google Scholar
Rafal, R. D. Oculomotor functions of the parietal lobe: effects of chronic lesions in humans. Cortex42, 730–739 (2006). ArticlePubMed Google Scholar
Milner, A. D. & Goodale, M. A. Two visual systems re-viewed. Neuropsychologia46, 774–785 (2008). ArticleCASPubMed Google Scholar
Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. Separate body- and world-referenced representations of visual space in parietal cortex. Nature394, 887–891 (1998). ArticleCASPubMed Google Scholar
Sereno, M. I. & Huang, R. S. A human parietal face area contains aligned head-centered visual and tactile maps. Nature Neurosci.9, 1337–1343 (2006). ArticleCASPubMed Google Scholar
Prevosto, V., Graf, W. & Ugolini, G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb. Cortex20, 214–228 (2010). ArticlePubMed Google Scholar
Graziano, M. S., Cooke, D. F. & Taylor, C. S. Coding the location of the arm by sight. Science290, 1782–1786 (2000). ArticleCASPubMed Google Scholar
Makin, T. R., Holmes, N. P. & Zohary, E. Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J. Neurosci.27, 731–740 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, J., Reitzen, S. D., Kohlenstein, J. B. & Gardner, E. P. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey. J. Neurophysiol.102, 3310–3328 (2009). ArticlePubMedPubMed Central Google Scholar
Blangero, A., Menz, M. M., McNamara, A. & Binkofski, F. Parietal modules for reaching. Neuropsychologia47, 1500–1507 (2009). ArticleCASPubMed Google Scholar
Cavina-Pratesi, C., Ietswaart, M., Humphreys, G. W., Lestou, V. & Milner, A. D. Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia48, 226–234 (2010). ArticlePubMed Google Scholar
Culham, J. C. & Valyear, K. F. Human parietal cortex in action. Curr. Opin. Neurobiol.16, 205–212 (2006). ArticleCASPubMed Google Scholar
Castiello, U. The neuroscience of grasping. Nature Rev. Neurosci.6, 726–736 (2005). ArticleCAS Google Scholar
Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr. Biol.4, 604–610 (1994). This provides evidence for the importance of the parieto–premotor pathway in visually-guided action by demonstrating that optic ataxia can result from lesions of the posterior parietal cortex. Also shows a double dissociation with patient D.F., whose perception but not action is impaired by ventral stream lesions. ArticleCASPubMed Google Scholar
Ishida, H., Nakajima, K., Inase, M. & Murata, A. Shared mapping of own and others' bodies in visuotactile bimodal area of monkey parietal cortex. J. Cogn. Neurosci.22, 83–96 (2010). ArticlePubMed Google Scholar
Evangeliou, M. N., Raos, V., Galletti, C. & Savaki, H. E. Functional imaging of the parietal cortex during action execution and observation. Cereb. Cortex19, 624–639 (2009). ArticlePubMed Google Scholar
Gardner, E. P. et al. Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. J. Neurophysiol.97, 387–406 (2007). ArticlePubMed Google Scholar
Clower, D. M., Dum, R. P. & Strick, P. L. Basal ganglia and cerebellar inputs to 'AIP'. Cereb. Cortex15, 913–920 (2005). ArticlePubMed Google Scholar
Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci.21, 6283–6291 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol.428, 112–137 (2000). ArticleCASPubMed Google Scholar
Rozzi, S., Ferrari, P. F., Bonini, L., Rizzolatti, G. & Fogassi, L. Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur. J. Neurosci.28, 1569–1588 (2008). A broad survey of the response properties of neurons across the IPL, elucidating the distribution of various visual and somatosensory response properties. These distributions provide evidence for the shift in function between rIPL and cIPL and in doing so highlight the importance of these large-scale surveys of the response properties of single neurons. ArticlePubMed Google Scholar
Sakata, H. & Kusunoki, M. Organization of space perception: neural representation of three-dimensional space in the posterior parietal cortex. Curr. Opin. Neurobiol.2, 170–174 (1992). ArticleCASPubMed Google Scholar
Chafee, M. V., Crowe, D. A., Averbeck, B. B. & Georgopoulos, A. P. Neural correlates of spatial judgement during object construction in parietal cortex. Cereb. Cortex15, 1393–1413 (2005). ArticlePubMed Google Scholar
Chafee, M. V., Averbeck, B. B. & Crowe, D. A. Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position. Cereb. Cortex17, 2914–2932 (2007). ArticlePubMed Google Scholar
Crowe, D. A., Averbeck, B. B. & Chafee, M. V. Neural ensemble decoding reveals a correlate of viewer- to object-centered spatial transformation in monkey parietal cortex. J. Neurosci.28, 5218–5228 (2008). ArticleCASPubMedPubMed Central Google Scholar
Crowe, D. A., Averbeck, B. B., Chafee, M. V. & Georgopoulos, A. P. Dynamics of parietal neural activity during spatial cognitive processing. Neuron47, 885–891 (2005). ArticleCASPubMed Google Scholar
Crowe, D. A., Chafee, M. V., Averbeck, B. B. & Georgopoulos, A. P. Neural activity in primate parietal area 7a related to spatial analysis of visual mazes. Cereb. Cortex14, 23–34 (2004). ArticlePubMed Google Scholar
Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R. & Riepe, M. W. Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neurosci.3, 404–408 (2000). ArticleCASPubMed Google Scholar
Maguire, E. A. et al. Knowing where and getting there: a human navigation network. Science280, 921–924 (1998). ArticleCASPubMed Google Scholar
Tsao, D. Y. et al. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron39, 555–568 (2003). ArticleCASPubMed Google Scholar
Guariglia, C., Piccardi, L., Iaria, G., Nico, D. & Pizzamiglio, L. Representational neglect and navigation in real space. Neuropsychologia43, 1138–1143 (2005). ArticlePubMed Google Scholar
Kase, C. S., Troncoso, J. F., Court, J. E., Tapia, J. F. & Mohr, J. P. Global spatial disorientation. Clinico-pathologic correlations. J. Neurol. Sci.34, 267–278 (1977). ArticleCASPubMed Google Scholar
Stark, M., Coslett, H. B. & Saffran, E. M. Impairment of a egocentric map of locations: implication for perception and action. Cogn. Neuropsychol.13, 418–524 (1996). Article Google Scholar
Huerta, M. F. & Kaas, J. H. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J. Comp. Neurol.293, 299–330 (1990). ArticleCASPubMed Google Scholar
Pierrot-Deseilligny, C., Milea, D. & Muri, R. M. Eye movement control by the cerebral cortex. Curr. Opin. Neurol.17, 17–25 (2004). ArticlePubMed Google Scholar
Olson, C. R., Musil, S. Y. & Goldberg, M. E. Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J. Neurophysiol.76, 3285–3300 (1996). ArticleCASPubMed Google Scholar
McCoy, A. N. & Platt, M. L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nature Neurosci.8, 1220–1227 (2005). ArticleCASPubMed Google Scholar
McCoy, A. N., Crowley, J. C., Haghighian, G., Dean, H. L. & Platt, M. L. Saccade reward signals in posterior cingulate cortex. Neuron40, 1031–1040 (2003). ArticleCASPubMed Google Scholar
Berman, R. A. et al. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum. Brain Mapp.8, 209–225 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tanabe, J., Tregellas, J., Miller, D., Ross, R. G. & Freedman, R. Brain activation during smooth-pursuit eye movements. Neuroimage17, 1315–1324 (2002). ArticlePubMed Google Scholar
Dean, H. L. & Platt, M. L. Allocentric spatial referencing of neuronal activity in macaque posterior cingulate cortex. J. Neurosci.26, 1117–1127 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vogt, B. A., Finch, D. M. & Olson, C. R. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex2, 435–443 (1992). CASPubMed Google Scholar
Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nature Neurosci.3, 284–291 (2000). ArticleCASPubMed Google Scholar
Mesulam, M. M., Nobre, A. C., Kim, Y. H., Parrish, T. B. & Gitelman, D. R. Heterogeneity of cingulate contributions to spatial attention. Neuroimage13, 1065–1072 (2001). ArticleCASPubMed Google Scholar
Small, D. M. et al. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage18, 633–641 (2003). ArticleCASPubMed Google Scholar
Bledowski, C., Rahm, B. & Rowe, J. B. What “works” in working memory? Separate systems for selection and updating of critical information. J. Neurosci.29, 13735–13741 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sato, N., Sakata, H., Tanaka, Y. L. & Taira, M. Context-dependent place-selective responses of the neurons in the medial parietal region of macaque monkeys. Cereb. Cortex20, 846–858 (2010). ArticlePubMed Google Scholar
Sato, N., Sakata, H., Tanaka, Y. L. & Taira, M. Navigation-associated medial parietal neurons in monkeys. Proc. Natl Acad. Sci. USA103, 17001–17006 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kovacs, G., Cziraki, C. & Greenlee, M. W. Neural correlates of stimulus-invariant decisions about motion in depth. Neuroimage51, 329–335 (2010). ArticlePubMed Google Scholar
Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nature Rev. Neurosci.9, 182–194 (2008). ArticleCAS Google Scholar
Aggleton, J. P. Understanding retrosplenial amnesia: insights from animal studies. Neuropsychologia48, 2328–2338 (2010). ArticlePubMed Google Scholar
Iaria, G., Chen, J. K., Guariglia, C., Ptito, A. & Petrides, M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur. J. Neurosci.25, 890–899 (2007). ArticlePubMed Google Scholar
Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci.12, 388–396 (2008). ArticlePubMedPubMed Central Google Scholar
Maguire, E. A. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol.42, 225–238 (2001). ArticleCASPubMed Google Scholar
Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N. & Hirayama, K. Pure topographic disorientation due to right retrosplenial lesion. Neurology49, 464–469 (1997). ArticleCASPubMed Google Scholar
Iaria, G., Bogod, N., Fox, C. J. & Barton, J. J. Developmental topographical disorientation: case one. Neuropsychologia47, 30–40 (2009). ArticlePubMed Google Scholar
Ino, T. et al. Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies. Cortex43, 248–254 (2007). ArticlePubMed Google Scholar
Diekmann, V., Jurgens, R. & Becker, W. Deriving angular displacement from optic flow: a fMRI study. Exp. Brain Res.195, 101–116 (2009). ArticlePubMed Google Scholar
Baumann, O. & Mattingley, J. B. Medial parietal cortex encodes perceived heading direction in humans. J. Neurosci.30, 12897–12901 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hashimoto, R., Tanaka, Y. & Nakano, I. Heading disorientation: a new test and a possible underlying mechanism. Eur. Neurol.63, 87–93 (2010). This study is notable for both the specificity of the lesion (case 1), and the simplicity of the task used to demonstrate that RSC is crucial for updating representations after changes in heading. ArticlePubMed Google Scholar
Committeri, G. et al. Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J. Cogn. Neurosci.16, 1517–1535 (2004). ArticlePubMed Google Scholar
Rosenbaum, R. S., Ziegler, M., Winocur, G., Grady, C. L. & Moscovitch, M. “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus14, 826–835 (2004). ArticlePubMed Google Scholar
Ghaem, O. et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport8, 739–744 (1997). ArticleCASPubMed Google Scholar
Suzuki, M., Tsukiura, T., Matsue, Y., Yamadori, A. & Fujii, T. Dissociable brain activations during the retrieval of different kinds of spatial context memory. Neuroimage25, 993–1001 (2005). ArticlePubMed Google Scholar
Epstein, R. A., Parker, W. E. & Feiler, A. M. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci.27, 6141–6149 (2007). This provides evidence for the sensitivity of the retrosplenial complex to different forms of scene processing consistent with its complex connectivity with the posterior parietal cortex, the parahippocampal cortex, and hippocampus. It also contrasts retrosplenial complex response with that of the parahippocampal cortex. ArticleCASPubMedPubMed Central Google Scholar
Epstein, R. A. & Higgins, J. S. Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb. Cortex17, 1680–1693 (2007). ArticlePubMed Google Scholar
Galati, G., Pelle, G., Berthoz, A. & Committeri, G. Multiple reference frames used by the human brain for spatial perception and memory. Exp. Brain Res.206, 109–120 (2010). ArticlePubMed Google Scholar
Clark, B. J., Bassett, J. P., Wang, S. S. & Taube, J. S. Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. J. Neurosci.30, 5289–5302 (2010). ArticleCASPubMedPubMed Central Google Scholar
Park, S. & Chun, M. M. Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage47, 1747–1756 (2009). ArticlePubMed Google Scholar
Park, S., Intraub, H., Yi, D. J., Widders, D. & Chun, M. M. Beyond the edges of a view: boundary extension in human scene-selective visual cortex. Neuron54, 335–342 (2007). ArticleCASPubMed Google Scholar
Gramann, K. et al. Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation. J. Cogn. Neurosci.22, 2836–2849 (2009). Article Google Scholar
Park, S., Chun, M. M. & Johnson, M. K. Refreshing and integrating visual scenes in Sscene-selective cortex. J. Cogn. Neurosci.22, 2813–2822 (2009). Article Google Scholar
Wolbers, T. & Buchel, C. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J. Neurosci.25, 3333–3340 (2005). ArticleCASPubMedPubMed Central Google Scholar
Saleem, K. S., Price, J. L. & Hashikawa, T. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol.500, 973–1006 (2007). This provides the crucial neuroanatomical evidence necessary to effectively subdivide and characterize the parahippocampal and perirhinal cortices in different macaque species. ArticleCASPubMed Google Scholar
Hecaen, H., Tzortzis, C. & Rondot, P. Loss of topographic memory with learning deficits. Cortex16, 525–542 (1980). ArticleCASPubMed Google Scholar
Landis, T., Cummings, J. L., Benson, D. F. & Palmer, E. P. Loss of topographic familiarity. An environmental agnosia. Arch. Neurol.43, 132–136 (1986). ArticleCASPubMed Google Scholar
Takahashi, N. & Kawamura, M. Pure topographical disorientation-the anatomical basis of landmark agnosia. Cortex38, 717–725 (2002). ArticlePubMed Google Scholar
Alvarado, M. C. & Bachevalier, J. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J. Neurosci.25, 1599–1609 (2005). ArticleCASPubMedPubMed Central Google Scholar
Malkova, L. & Mishkin, M. One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J. Neurosci.23, 1956–1965 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bachevalier, J. & Nemanic, S. Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus18, 64–80 (2008). ArticlePubMed Google Scholar
Sato, N. & Nakamura, K. Visual response properties of neurons in the parahippocampal cortex of monkeys. J. Neurophysiol.90, 876–886 (2003). ArticlePubMed Google Scholar
Barrash, J. A historical review of topographical disorientation and its neuroanatomical correlates. J. Clin. Exp. Neuropsychol.20, 807–827 (1998). ArticleCASPubMed Google Scholar
Barrash, J., Damasio, H., Adolphs, R. & Tranel, D. The neuroanatomical correlates of route learning impairment. Neuropsychologia38, 820–836 (2000). ArticleCASPubMed Google Scholar
Habib, M. & Sirigu, A. Pure topographical disorientation: a definition and anatomical basis. Cortex23, 73–85 (1987). ArticleCASPubMed Google Scholar
Mendez, M. F. & Cherrier, M. M. Agnosia for scenes in topographagnosia. Neuropsychologia41, 1387–1395 (2003). ArticlePubMed Google Scholar
Aguirre, G. K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron21, 373–383 (1998). ArticleCASPubMed Google Scholar
Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature392, 598–601 (1998). ArticleCASPubMed Google Scholar
Burgess, N., Maguire, E. A., Spiers, H. J. & O'Keefe, J. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage14, 439–453 (2001). ArticleCASPubMed Google Scholar
Janzen, G. & van Turennout, M. Selective neural representation of objects relevant for navigation. Nature Neurosci.7, 673–677 (2004). ArticleCASPubMed Google Scholar
Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G. & O'Keefe, J. Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J. Cogn. Neurosci.10, 61–76 (1998). ArticleCASPubMed Google Scholar
Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex6, 823–829 (1996). ArticleCASPubMed Google Scholar
Maguire, E. A. Hippocampal involvement in human topographical memory: evidence from functional imaging. Phil. Trans. R. Soc. Lond. B352, 1475–1480 (1997). ArticleCAS Google Scholar
Buffalo, E. A., Bellgowan, P. S. & Martin, A. Distinct roles for medial temporal lobe structures in memory for objects and their locations. Learn. Mem.13, 638–643 (2006). ArticlePubMedPubMed Central Google Scholar
Park, S., Brady, T. F., Greene, M. R. & Oliva, A. Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. J. Neurosci.31, 1333–1340 (2011). ArticleCASPubMedPubMed Central Google Scholar
Walther, D. B., Caddigan, E., Fei-Fei, L. & Beck, D. M. Natural scene categories revealed in distributed patterns of activity in the human brain. J. Neurosci.29, 10573–10581 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bar, M., Aminoff, E. & Schacter, D. L. Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se.J. Neurosci.28, 8539–8544 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rolls, E. T. Neurophysiological and computational analyses of the primate presubiculum, subiculum and related areas. Behav. Brain Res.174, 289–303 (2006). ArticleCASPubMed Google Scholar
Taube, J. S. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci.30, 181–207 (2007). ArticleCASPubMed Google Scholar
Matsumura, N. et al. Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J. Neurosci.19, 2381–2393 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rolls, E. T. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus9, 467–480 (1999). ArticleCASPubMed Google Scholar
Georges-Francois, P., Rolls, E. T. & Robertson, R. G. Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb. Cortex9, 197–212 (1999). ArticleCASPubMed Google Scholar
Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci.7, 1951–1968 (1987). ArticleCASPubMedPubMed Central Google Scholar
O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature381, 425–428 (1996). ArticleCASPubMed Google Scholar
Cressant, A., Muller, R. U. & Poucet, B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci.17, 2531–2542 (1997). ArticleCASPubMedPubMed Central Google Scholar
Suthana, N. A., Ekstrom, A. D., Moshirvaziri, S., Knowlton, B. & Bookheimer, S. Y. Human hippocampal CA1 involvement during allocentric encoding of spatial information. J. Neurosci.29, 10512–10519 (2009). ArticleCASPubMedPubMed Central Google Scholar
Aflalo, T. N. & Graziano, M. S. Organization of the macaque extrastriate visual cortex re-examined using the principle of spatial continuity of function. J. Neurophysiol.105, 305–320 (2011). ArticleCASPubMed Google Scholar
Goldman-Rakic, P. S., Selemon, L. D. & Schwartz, M. L. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience12, 719–743 (1984). ArticleCASPubMed Google Scholar
Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex4, 470–483 (1994). ArticleCASPubMed Google Scholar
Mishkin, M., Suzuki, W. A., Gadian, D. G. & Vargha-Khadem, F. Hierarchical organization of cognitive memory. Phil. Trans. R. Soc. Lond. B352, 1461–1467 (1997). ArticleCAS Google Scholar
Srivastava, S., Orban, G. A., De Maziere, P. A. & Janssen, P. A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse. J. Neurosci.29, 10613–10626 (2009). ArticleCASPubMedPubMed Central Google Scholar
Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol.83, 2580–2601 (2000). ArticleCASPubMed Google Scholar
Cohen, Y. E. & Andersen, R. A. Reaches to sounds encoded in an eye-centered reference frame. Neuron27, 647–652 (2000). ArticleCASPubMed Google Scholar
Phan, M. L., Schendel, K. L., Recanzone, G. H. & Robertson, L. C. Auditory and visual spatial localization deficits following bilateral parietal lobe lesions in a patient with Balint's syndrome. J. Cogn. Neurosci.12, 583–600 (2000). ArticleCASPubMed Google Scholar
Pavani, F., Ladavas, E. & Driver, J. Auditory and multisensory aspects of visuospatial neglect. Trends Cogn. Sci.7, 407–414 (2003). ArticlePubMed Google Scholar
di Pellegrino, G., Ladavas, E. & Farne, A. Seeing where your hands are. Nature388, 730 (1997). ArticleCASPubMed Google Scholar
Drowos, D. B., Berryhill, M., Andre, J. M. & Olson, I. R. True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions. Neuropsychology24, 465–475 (2010). ArticlePubMedPubMed Central Google Scholar
Berryhill, M. E., Picasso, L., Arnold, R., Drowos, D. & Olson, I. R. Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia48, 1385–1393 (2010). ArticlePubMedPubMed Central Google Scholar
Vinckier, F. et al. “What” and “where” in word reading: ventral coding of written words revealed by parietal atrophy. J. Cogn. Neurosci.18, 1998–2012 (2006). ArticlePubMed Google Scholar
Maravita, A. & Iriki, A. Tools for the body (schema). Trends Cogn. Sci.8, 79–86 (2004). ArticlePubMed Google Scholar
Mahon, B. Z., Schwarzbach, J. & Caramazza, A. The representation of tools in left parietal cortex is independent of visual experience. Psychol. Sci.21, 764–771 (2010). ArticlePubMed Google Scholar
Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H. & Damasio, A. R. Neural correlates of conceptual knowledge for actions. Cogn. Neuropsychol.20, 409–432 (2003). ArticlePubMed Google Scholar
Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol.58, 25–45 (2007). ArticlePubMed Google Scholar