New technologies for examining the role of neuronal ensembles in drug addiction and fear (original) (raw)
Hebb, D. O. The Organization of Behavior: a Neuropsychological Theory (Wiley, 1949). Google Scholar
Schwindel, C. D. & McNaughton, B. L. Hippocampal–cortical interactions and the dynamics of memory trace reactivation. Prog. Brain Res.193, 163–177 (2011). ArticlePubMed Google Scholar
Nicolelis, M. A., Fanselow, E. E. & Ghazanfar, A. A. Hebb's dream: the resurgence of cell assemblies. Neuron19, 219–221 (1997). ArticleCASPubMed Google Scholar
Guzowski, J. F., Knierim, J. J. & Moser, E. I. Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron44, 581–584 (2004). ArticleCASPubMed Google Scholar
Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol.42, 719–761 (1994). ArticleCASPubMed Google Scholar
Knierim, J. J. & Zhang, K. Attractor dynamics of spatially correlated neural activity in the limbic system. Annu. Rev. Neurosci.35, 267–285 (2012). ArticleCASPubMedPubMed Central Google Scholar
Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neurosci.16, 130–138 (2013). ArticleCASPubMed Google Scholar
Penner, M. R. & Mizumori, S. J. Neural systems analysis of decision making during goal-directed navigation. Prog. Neurobiol.96, 96–135 (2012). ArticlePubMed Google Scholar
Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol.20, 408–434 (1957). ArticleCASPubMed Google Scholar
John, E. R. & Schwartz, E. L. The neurophysiology of information processing and cognition. Annu. Rev. Psychol.29, 1–29 (1978). ArticleCASPubMed Google Scholar
Carelli, R. M. & Deadwyler, S. A. Cellular mechanisms underlying reinforcement-related processing in the nucleus accumbens: electrophysiological studies in behaving animals. Pharmacol. Biochem. Behav.57, 495–504 (1997). ArticleCASPubMed Google Scholar
Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci.24, 897–931 (2001). ArticleCASPubMed Google Scholar
Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neurosci.2, 1120–1124 (1999). ArticleCASPubMed Google Scholar
Mattson, B. J. et al. Context-specific sensitization of cocaine-induced locomotor activity and associated neuronal ensembles in rat nucleus accumbens. Eur. J. Neurosci.27, 202–212 (2008). ArticlePubMed Google Scholar
Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science317, 1230–1233 (2007). ArticleCASPubMed Google Scholar
Guzowski, J. F. et al. Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr. Opin. Neurobiol.15, 599–606 (2005). ArticleCASPubMed Google Scholar
Garner, A. & Mayford, M. New approaches to neural circuits in behavior. Learn. Mem.19, 385–390 (2012). ArticleCASPubMed Google Scholar
Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature461, 941–946 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nature Neurosci.16, 264–266 (2013). ArticleCASPubMed Google Scholar
Sweatt, J. D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem.76, 1–10 (2001). ArticleCASPubMed Google Scholar
Alberini, C. M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci.28, 51–56 (2005). ArticleCASPubMed Google Scholar
Tronson, N. C. & Taylor, J. R. Molecular mechanisms of memory reconsolidation. Nature Rev. Neurosci.8, 262–275 (2007). ArticleCAS Google Scholar
Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron71, 9–34 (2011). ArticleCASPubMed Google Scholar
Koya, E. et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nature Neurosci.12, 1069–1073 (2009). ArticleCASPubMed Google Scholar
Guez-Barber, D. et al. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J. Neurosci.31, 4251–4259 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Cifani, C. et al. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using _c-fos_-GFP transgenic female rats. J. Neurosci.32, 8480–8490 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature Neurosci.12, 1438–1443 (2009). ArticleCASPubMed Google Scholar
Morgan, J. I. & Curran, T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci.14, 421–451 (1991). ArticleCASPubMed Google Scholar
Cohen, S. & Greenberg, M. E. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol.24, 183–209 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Herdegen, T. & Leah, J. D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev.28, 370–490 (1998). ArticleCASPubMed Google Scholar
Goldberg, S. R. Stimuli associated with drug injections as events that control behavior. Pharmacol. Rev.27, 325–340 (1976). Google Scholar
Stewart, J., de Wit, H. & Eikelboom, R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev.91, 251–268 (1984). ArticleCASPubMed Google Scholar
O'Brien, C. P., Ehrman, R. N. & Ternes, J. W. in Behavioral Analysis of Drug Dependence (eds Goldberg, S. & Stolerman, I.) 329–356 (Academic Press, 1986). Google Scholar
Wikler, A. Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Arch. Gen. Psychiatry28, 611–616 (1973). ArticleCASPubMed Google Scholar
Siegel, S. Drug anticipation and drug addiction. The 1998 H. David Archibald Lecture. Addiction94, 1113–1124 (1999). ArticleCASPubMed Google Scholar
Carelli, R. M. The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav. Cogn. Neurosci. Rev.1, 281–296 (2002). ArticlePubMed Google Scholar
Rebec, G. V. & Sun, W. Neuronal substrates of relapse to cocaine-seeking behavior: role of prefrontal cortex. J. Exp. Anal. Behav.84, 653–666 (2005). ArticlePubMedPubMed Central Google Scholar
Schuster, C. R. & Thompson, T. Self administration of and behavioral dependence on drugs. Annu. Rev. Pharmacol.9, 483–502 (1969). ArticleCASPubMed Google Scholar
Chang, J. Y., Zhang, L., Janak, P. H. & Woodward, D. J. Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats. Brain Res.754, 12–20 (1997). ArticleCASPubMed Google Scholar
Kiyatkin, E. A. & Rebec, G. V. Activity of presumed dopamine neurons in the ventral tegmental area during heroin self-administration. Neuroreport8, 2581–2585 (1997). ArticleCASPubMed Google Scholar
Carelli, R. M., King, V. C., Hampson, R. E. & Deadwyler, S. A. Firing patterns of nucleus accumbens neurons during cocaine self-administration in rats. Brain Res.626, 14–22 (1993). ArticleCASPubMed Google Scholar
Peoples, L. L. & West, M. O. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J. Neurosci.16, 3459–3473 (1996). ArticleCASPubMedPubMed Central Google Scholar
Carelli, R. M., Williams, J. G. & Hollander, J. A. Basolateral amygdala neurons encode cocaine self-administration and cocaine-associated cues. J. Neurosci.23, 8204–8211 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
Root, D. H., Fabbricatore, A. T., Ma, S., Barker, D. J. & West, M. O. Rapid phasic activity of ventral pallidal neurons during cocaine self-administration. Synapse64, 704–713 (2010). PubMedPubMed CentralCAS Google Scholar
Bowers, M. S., Chen, B. T. & Bonci, A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron67, 11–24 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Russo, S. J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci.33, 267–276 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Wolf, M. E. & Ferrario, C. R. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci. Biobehav. Rev.35, 185–211 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Thomas, M. J., Kalivas, P. W. & Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol.154, 327–342 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry162, 1403–1413 (2005). ArticlePubMed Google Scholar
Shaham, Y. & Hope, B. T. The role of neuroadaptations in relapse to drug seeking. Nature Neurosci.8, 1437–1439 (2005). ArticleCASPubMed Google Scholar
Mameli, M. & Luscher, C. Synaptic plasticity and addiction: learning mechanisms gone awry. Neuropharmacology61, 1052–1059 (2011). ArticleCASPubMed Google Scholar
Shaham, Y., Shalev, U., Lu, L., De Wit, H. & Stewart, J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology168, 3–20 (2003). ArticleCASPubMed Google Scholar
Kasof, G. M. et al. Spontaneous and evoked glutamate signalling influences Fos-lacZ expression and pyramidal cell death in hippocampal slice cultures from transgenic rats. Brain Res. Mol. Brain Res.34, 197–208 (1995). ArticleCASPubMed Google Scholar
Kasof, G. M. et al. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos–lacZ transgenic rats. J. Neurosci.15, 4238–4249 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kasof, G. M., Smeyne, R. J., Curran, T. & Morgan, J. I. Developmental expression of Fos-lacZ in the brains of postnatal transgenic rats. Brain Res. Dev. Brain Res.93, 191–197 (1996). ArticleCASPubMed Google Scholar
Bakina, E. & Farquhar, D. Intensely cytotoxic anthracycline prodrugs: galactosides. Anticancer Drug Des.14, 507–515 (1999). CASPubMed Google Scholar
Farquhar, D. et al. Suicide gene therapy using E. coli β-galactosidase. Cancer Chemother. Pharmacol.50, 65–70 (2002). ArticleCASPubMed Google Scholar
Ghosh, A. K., Khan, S., Marini, J., Nelson, J. C. & Farquhar, D. A daunorubicin β-galactoside prodrug for use in conjunction with gene-directed enzyme prodrug therapy. Tetrahedron Lett.41, 4871–4874 (2000). ArticleCAS Google Scholar
Bossert, J. M. et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nature Neurosci.14, 420–422 (2011). ArticleCASPubMed Google Scholar
Fanous, S. et al. Role of orbitofrontal cortex neuronal ensembles in the expression of incubation of heroin craving. J. Neurosci.32, 11600–11609 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Santone, K. S., Oakes, S. G., Taylor, S. R. & Powis, G. Anthracycline-induced inhibition of a calcium action potential in differentiated murine neuroblastoma cells. Cancer Res.46, 2659–2664 (1986). CASPubMed Google Scholar
Badiani, A. & Robinson, T. E. Drug-induced neurobehavioral plasticity: the role of environmental context. Behav. Pharmacol.15, 327–339 (2004). ArticleCASPubMed Google Scholar
Stewart, J. & Badiani, A. Tolerance and sensitization to the behavioral effects of drugs. Behav. Pharmacol.4, 289–312 (1993). CASPubMed Google Scholar
Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development116, 201–211 (1992). CASPubMed Google Scholar
Crombag, H., Bossert, J. M., Koya, E. & Shaham, Y. Context-induced relapse to drug seeking: a review. Trans. R. Soc. B363, 3233–3243 (2008). Article Google Scholar
Shalev, U., Morales, M., Hope, B., Yap, J. & Shaham, Y. Time-dependent changes in extinction behavior and stress-induced reinstatement of drug seeking following withdrawal from heroin in rats. Psychopharmacology156, 98–107 (2001). ArticleCASPubMed Google Scholar
Neisewander, J. L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci.20, 798–805 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lobo, M. K. Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. Int. Rev. Neurobiol.89, 1–35 (2009). ArticleCASPubMed Google Scholar
Lobo, M. K., Karsten, S. L., Gray, M., Geschwind, D. H. & Yang, X. W. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nature Neurosci.9, 443–452 (2006). ArticleCASPubMed Google Scholar
Dougherty, J. D. & Geschwind, D. H. Progress in realizing the promise of microarrays in systems neurobiology. Neuron45, 183–185 (2005). ArticleCASPubMed Google Scholar
Karsten, S. L., Kudo, L. C. & Geschwind, D. H. Gene expression analysis of neural cells and tissues using DNA microarrays. Curr. Protoc. Neurosci.45, 4.28.1–4.28.38 (2008). Google Scholar
Guez-Barber, D. et al. FACS purification of immunolabeled cell types from adult rat brain. J. Neurosci. Methods203, 10–18 (2012). ArticleCASPubMed Google Scholar
Fanous, S. et al. Unique gene alterations are induced in FACS-purified Fos-positive neurons activated during cue-induced relapse to heroin seeking. J. Neurochem.124, 100–108 (2013). ArticleCASPubMed Google Scholar
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci.8, 1481–1489 (2005). ArticleCASPubMed Google Scholar
Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res. Rev.56, 27–78 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, Q. R. et al. Detection of molecular alterations in methamphetamine-activated Fos-expressing neurons from a single rat dorsal striatum using fluorescence-activated cell sorting (FACS). J. Neurochem.http://dx.doi.org/10.1111/jnc.12381 (2013).
Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron40, 361–379 (2003). ArticleCASPubMed Google Scholar
Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci.23, 649–711 (2000). ArticleCASPubMed Google Scholar
Luscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron69, 650–663 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Benedetti, B. L., Takashima, Y., Wen, J. A., Urban-Ciecko, J. & Barth, A. L. Differential wiring of layer 2/3 neurons drives sparse and reliable firing during neocortical development. Cereb.Cortexhttp://dx.doi.org/10.1093/cercor/bhs257 (2012).
Clem, R. L. & Barth, A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron49, 663–670 (2006). ArticleCASPubMed Google Scholar
Barth, A. L. Visualizing circuits and systems using transgenic reporters of neural activity. Curr. Opin. Neurobiol.17, 567–571 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci.24, 6466–6475 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Koya, E. et al. Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization. Nature Neurosci.15, 1556–1562 (2012). ArticleCASPubMed Google Scholar
Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron18, 269–280 (1997). ArticleCASPubMed Google Scholar
Nair, S. G., Adams-Deutsch, T., Epstein, D. H. & Shaham, Y. The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog. Neurobiol.89, 18–45 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Ghitza, U. E., Gray, S. M., Epstein, D. H., Rice, K. C. & Shaham, Y. The anxiogenic drug yohimbine reinstates palatable food seeking in a rat relapse model: a role of CRF1 receptors. Neuropsychopharmacology31, 2188–2196 (2006). ArticleCASPubMed Google Scholar
Nair, S. G. et al. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology36, 497–510 (2011). ArticleCASPubMed Google Scholar
Calu, D. J. et al. Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress-induced reinstatement of palatable food seeking in female rats. J. Neurosci.33, 214–226 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Bremner, J. D., Krystal, J. H., Southwick, S. M. & Charney, D. S. Noradrenergic mechanisms in stress and anxiety: II. clinical studies. Synapse23, 39–51 (1996). ArticleCASPubMed Google Scholar
Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature411, 583–587 (2001). ArticleCASPubMed Google Scholar
Mennerick, S. & Zorumski, C. F. Paired-pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. J. Physiol.488, 85–101 (1995). ArticlePubMedPubMed CentralCAS Google Scholar
Quirk, G. J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology33, 56–72 (2008). ArticlePubMed Google Scholar
Pape, H. C. & Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev.90, 419–463 (2010). ArticlePubMedCAS Google Scholar
Paz, R. & Pare, D. Physiological basis for emotional modulation of memory circuits by the amygdala. Curr. Opin. Neurobiol.23, 381–386 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Barot, S. K., Chung, A., Kim, J. J. & Bernstein, I. L. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning. PLoS ONE4, e6156 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Chung, A., Barot, S. K., Kim, J. J. & Bernstein, I. L. Biologically predisposed learning and selective associations in amygdalar neurons. Learn. Mem.18, 371–374 (2011). ArticlePubMedPubMed Central Google Scholar
Hashikawa, K., Matsuki, N. & Nomura, H. Preferential Arc transcription at rest in the active ensemble during associative learning. Neurobiol. Learn. Mem.95, 498–504 (2011). ArticleCASPubMed Google Scholar
Purgert, R. J., Wheeler, D. S., McDannald, M. A. & Holland, P. C. Role of amygdala central nucleus in aversive learning produced by shock or by unexpected omission of food. J. Neurosci.32, 2461–2472 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Josselyn, S. A. Continuing the search for the engram: examining the mechanism of fear memories. J. Psychiatry Neurosci.35, 221–228 (2010). ArticlePubMedPubMed Central Google Scholar
Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron63, 27–39 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Tayler, K. K., Tanaka, K. Z., Reijmers, L. G. & Wiltgen, B. J. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol.23, 99–106 (2013). ArticleCASPubMed Google Scholar
Han, J. H. et al. Neuronal competition and selection during memory formation. Science316, 457–460 (2007). ArticleCASPubMed Google Scholar
Dong, Y. et al. CREB modulates excitability of nucleus accumbens neurons. Nature Neurosci.9, 475–477 (2006). ArticleCASPubMed Google Scholar
Marie, H., Morishita, W., Yu, X., Calakos, N. & Malenka, R. C. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron45, 741–752 (2005). ArticleCASPubMed Google Scholar
Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron78, 773–784 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Sanders, J., Cowansage, K., Baumgartel, K. & Mayford, M. Elimination of dendritic spines with long-term memory is specific to active circuits. J. Neurosci.32, 12570–12578 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Matsuo, N., Reijmers, L. & Mayford, M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science319, 1104–1107 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Cao, V. Y. et al. In vivo two-photon imaging of experience-dependent molecular changes in cortical neurons. J. Vis. Exp.71, e50148 (2013). Google Scholar
Kawashima, T. et al. Synaptic activity-responsive element in the Arc/Arg-3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc. Natl Acad. Sci. USA106, 316–321 (2009). ArticlePubMed Google Scholar
Johnson, J. W. & Kotermanski, S. E. Mechanism of action of memantine. Curr. Opin. Pharmacol.6, 61–67 (2006). ArticleCASPubMed Google Scholar
Sinner, B. & Graf, B. M. Ketamine. Handb. Exp. Pharmacol.182, 313–333 (2008). ArticleCAS Google Scholar
Wood, P. L. The NMDA receptor complex: a long and winding road to therapeutics. IDrugs8, 229–235 (2005). CASPubMed Google Scholar
Nader, K., Schafe, G. E. & LeDoux, J. E. The labile nature of consolidation theory. Nature Rev. Neurosci.1, 216–219 (2000). ArticleCAS Google Scholar
Lerea, L. S., Butler, L. S. & McNamara, J. O. NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes. J. Neurosci.12, 2973–2981 (1992). ArticleCASPubMedPubMed Central Google Scholar
Sgambato, V., Abo, V., Rogard, M., Besson, M. J. & Deniau, J. M. Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience81, 93–112 (1997). ArticleCASPubMed Google Scholar
Vazdarjanova, A. & Guzowski, J. F. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci.24, 6489–6496 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Hope, B. T. et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron13, 1235–1244 (1994). ArticleCASPubMed Google Scholar
Sheng, M. & Greenberg, M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron4, 477–485 (1990). ArticleCASPubMed Google Scholar
Hardingham, G. E., Chawla, S., Johnson, C. M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature385, 260–265 (1997). ArticleCASPubMed Google Scholar
Valjent, E., Caboche, J. & Vanhoutte, P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol. Neurobiol.23, 83–99 (2001). ArticleCASPubMed Google Scholar
Thomas, G. M. & Huganir, R. L. MAPK cascade signalling and synaptic plasticity. Nature Rev. Neurosci.5, 173–183 (2004). ArticleCAS Google Scholar
Mattson, B. J. et al. Cocaine-induced CREB phosphorylation in nucleus accumbens of cocaine-sensitized rats is enabled by enhanced activation of extracellular signal-related kinase, but not protein kinase A. J. Neurochem.95, 1481–1494 (2005). ArticleCASPubMed Google Scholar
LaHoste, G. J., Yu, J. & Marshall, J. F. Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc. Natl Acad. Sci. USA90, 7451–7455 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hardingham, G. E., Arnold, F. J. & Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nature Neurosci.4, 261–267 (2001). ArticleCASPubMed Google Scholar
Deisseroth, K., Mermelstein, P. G., Xia, H. & Tsien, R. W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol.13, 354–365 (2003). ArticleCASPubMed Google Scholar
O'Donnell, P. Dopamine gating of forebrain neural ensembles. Eur. J. Neurosci.17, 429–435 (2003). ArticlePubMed Google Scholar
Labiner, D. M. et al. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J. Neurosci.13, 744–751 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kreuter, J. D., Mattson, B. J., Wang, B., You, Z. B. & Hope, B. T. Cocaine-induced Fos expression in rat striatum is blocked by chloral hydrate or urethane. Neuroscience127, 233–242 (2004). ArticleCASPubMed Google Scholar