Endothelial dysfunction as a potential contributor in diabetic nephropathy (original) (raw)
Bojestig, M., Arnqvist, H. J., Hermansson, G., Karlberg, B. E. & Ludvigsson, J. Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N. Engl. J. Med.330, 15–18 (1994). ArticleCASPubMed Google Scholar
Hovind, P. et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care26, 1258–1264 (2003). ArticlePubMed Google Scholar
Saito, Y. et al. Mesangiolysis in diabetic glomeruli: its role in the formation of nodular lesions. Kidney Int.34, 389–396 (1988). ArticleCASPubMed Google Scholar
Stout, L. C., Kumar, S. & Whorton, E. B. Insudative lesions—their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum. Pathol.25, 1213–1227 (1994). ArticleCASPubMed Google Scholar
Jensen, T. Increased plasma concentration of von Willebrand factor in insulin dependent diabetics with incipient nephropathy. BMJ298, 27–28 (1989). ArticleCASPubMedPubMed Central Google Scholar
Jensen, T., Bjerre-Knudsen, J., Feldt-Rasmussen, B. & Deckert, T. Features of endothelial dysfunction in early diabetic nephropathy. Lancet1, 461–463 (1989). ArticleCASPubMed Google Scholar
Stehouwer, C. D. et al. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet340, 319–323 (1992). ArticleCASPubMed Google Scholar
Stehouwer, C. D., Stroes, E. S., Hackeng, W. H., Mulder, P. G. & Den Ottolander, G. J. von Willebrand factor and development of diabetic nephropathy in IDDM. Diabetes40, 971–976 (1991). ArticleCASPubMed Google Scholar
Parving, H. H. et al. Macro-microangiopathy and endothelial dysfunction in NIDDM patients with and without diabetic nephropathy. Diabetologia39, 1590–1597 (1996). ArticleCASPubMed Google Scholar
Fioretto, P. et al. Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function and renal structure. Diabetologia41, 233–236 (1998). ArticleCASPubMed Google Scholar
Nieuwdorp, M. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes55, 1127–1132 (2006). ArticleCASPubMed Google Scholar
Nieuwdorp, M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes55, 480–486 (2006). ArticleCASPubMed Google Scholar
Dávila-Esqueda, M. E., Vertiz-Hernández, A. A. & Martínez-Morales, F. Comparative analysis of the renoprotective effects of pentoxifylline and vitamin E on streptozotocin-induced diabetes mellitus. Ren. Fail.27, 115–122 (2005). ArticlePubMed Google Scholar
Toyoda, M., Najafian, B., Kim, Y., Caramori, M. L. & Mauer, M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes56, 2155–2160 (2007). ArticleCASPubMed Google Scholar
Fioretto, P. et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia39, 1569–1576 (1996). ArticleCASPubMed Google Scholar
Gambara, V., Mecca, G., Remuzzi, G. & Bertani, T. Heterogeneous nature of renal lesions in type II diabetes. J. Am. Soc. Nephrol.3, 1458–1466 (1993). CASPubMed Google Scholar
White, K. E. & Bilous, R. W. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J. Am. Soc. Nephrol.11, 1667–1673 (2000). CASPubMed Google Scholar
Lane, P. H., Steffes, M. W., Fioretto, P. & Mauer, S. M. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int.43, 661–667 (1993). ArticleCASPubMed Google Scholar
Shibata, R. et al. Involvement of asymmetric dimethylarginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol. Dial. Transplant.24, 1162–1169 (2009). ArticleCASPubMed Google Scholar
Bangstad, H. J., Seljeflot, I., Berg, T. J. & Hanssen, K. F. Renal tubulointerstitial expansion is associated with endothelial dysfunction and inflammation in type 1 diabetes. Scand. J. Clin. Lab. Invest.69, 138–144 (2009). ArticleCASPubMed Google Scholar
Kosugi, T. et al. Lowering blood pressure blocks mesangiolysis and mesangial nodules, but not tubulointerstitial injury, in diabetic eNOS knockout mice. Am. J. Pathol.174, 1221–1229 (2009). ArticleCASPubMedPubMed Central Google Scholar
Temm, C. & Dominguez, J. H. Microcirculation: nexus of comorbidities in diabetes. Am. J. Physiol. Renal Physiol.293, F486–F493 (2007). ArticleCASPubMed Google Scholar
Brodsky, S. V., Morrishow, A. M., Dharia, N., Gross, S. S. & Goligorsky, M. S. Glucose scavenging of nitric oxide. Am. J. Physiol. Renal Physiol.280, F480–F486 (2001). ArticleCASPubMed Google Scholar
Bucala, R., Tracey, K. J. & Cerami, A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Invest.87, 432–438 (1991). ArticleCASPubMedPubMed Central Google Scholar
Khosla, U. M. et al. Hyperuricemia induces endothelial dysfunction. Kidney Int.67, 1739–1742 (2005). ArticlePubMed Google Scholar
Xiong, Y., Lei, M., Fu, S. & Fu, Y. Effect of diabetic duration on serum concentrations of endogenous inhibitor of nitric oxide synthase in patients and rats with diabetes. Life Sci.77, 149–159 (2005). ArticleCASPubMed Google Scholar
Ceriello, A. et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia44, 834–838 (2001). ArticleCASPubMed Google Scholar
Noiri, E. et al. Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension40, 535–540 (2002). ArticleCASPubMed Google Scholar
Liu, Y. et al. T-786C polymorphism of the endothelial nitric oxide synthase gene is associated with albuminuria in the diabetes heart study. J. Am. Soc. Nephrol.16, 1085–1090 (2005). ArticleCASPubMed Google Scholar
Neugebauer, S., Baba, T. & Watanabe, T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes49, 500–503 (2000). ArticleCASPubMed Google Scholar
Shin Shin, Y. et al. Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy. Diabetes Res. Clin. Pract.65, 257–265 (2004). ArticleCASPubMed Google Scholar
Zanchi, A. et al. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int.57, 405–413 (2000). ArticleCASPubMed Google Scholar
Degen, B., Schmidt, S. & Ritz, E. A polymorphism in the gene for the endothelial nitric oxide synthase and diabetic nephropathy. Nephrol. Dial. Transplant.16, 185 (2001). ArticleCASPubMed Google Scholar
Lin, S., Qu, H. & Qiu, M. Allele A in intron 4 of ecNOS gene will not increase the risk of diabetic nephropathy in type 2 diabetes of Chinese population. Nephron91, 768 (2002). ArticlePubMed Google Scholar
Rippin, J. D. et al. Nitric oxide synthase gene polymorphisms and diabetic nephropathy. Diabetologia46, 426–428 (2003). ArticleCASPubMed Google Scholar
Shimizu, T., Onuma, T., Kawamori, R., Makita, Y. & Tomino, Y. Endothelial nitric oxide synthase gene and the development of diabetic nephropathy. Diabetes Res. Clin. Pract.58, 179–185 (2002). ArticleCASPubMed Google Scholar
Hohenstein, B. et al. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol. Dial. Transplant.23, 1346–1354 (2008). ArticleCASPubMed Google Scholar
Sugimoto, H. et al. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy. Diabetologia41, 1426–1434 (1998). ArticleCASPubMed Google Scholar
Brodsky, S. V., Gao, S., Li, H. & Goligorsky, M. S. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am. J. Physiol. Heart Circ. Physiol.283, H2130–H2139 (2002). ArticleCASPubMed Google Scholar
Komers, R. et al. Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Diabetes55, 1651–1659 (2006). ArticleCASPubMed Google Scholar
Mogyorosi, A. & Ziyadeh, F. N. Increased decorin mRNA in diabetic mouse kidney and in mesangial and tubular cells cultured in high glucose. Am. J. Physiol.275, F827–F832 (1998). CASPubMed Google Scholar
Flyvbjerg, A., Bennett, W. F., Rasch, R., Kopchick, J. J. & Scarlett, J. A. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes48, 377–382 (1999). ArticleCASPubMed Google Scholar
Inada, A. et al. A model for diabetic nephropathy: advantages of the inducible cAMP early repressor transgenic mouse over the streptozotocin-induced diabetic mouse. J. Cell Physiol.215, 383–391 (2008). ArticleCASPubMed Google Scholar
Breyer, M. D. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol.16, 27–45 (2005). ArticlePubMed Google Scholar
Fujimoto, M. et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem. Biophys. Res. Commun.305, 1002–1007 (2003). ArticleCASPubMed Google Scholar
Wang, A. et al. Interference with TGF-beta signaling by _Smad3_-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am. J. Physiol. Renal Physiol.293, F1657–F1665 (2007). ArticleCASPubMed Google Scholar
Tay, Y. C. et al. Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int.68, 391–398 (2005). ArticlePubMed Google Scholar
Kanetsuna, Y. et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am. J. Pathol.170, 1473–1484 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. Diabetic eNOS knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol18, 539–550 (2007). ArticleCASPubMed Google Scholar
Brosius, F. C. 3rd et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol.20, 2503–2512 (2009). ArticlePubMed Google Scholar
Borch-Johnsen, K., Kreiner, S. & Deckert, T. Mortality of type 1 (insulin-dependent) diabetes mellitus in Denmark: a study of relative mortality in 2,930 Danish type 1 diabetic patients diagnosed from 1933 to 1972. Diabetologia29, 767–772 (1986). ArticleCASPubMed Google Scholar
Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes58, 1651–1658 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, T., Kosugi, T., Haneda, M., Rivard, C. J. & Long, D. A. Abnormal angiogenesis in diabetic nephropathy. Diabetes58, 1471–1478 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ichinose, K. et al. 2-(8-Hydroxy-6-methoxy-1-oxo-1h-2-benzopyran-3-yl) propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese type 2 diabetic mice. Diabetes55, 1232–1242 (2006). ArticleCASPubMed Google Scholar
Ichinose, K. et al. Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes54, 2891–2903 (2005). ArticleCASPubMed Google Scholar
Yamamoto, Y. et al. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes53, 1831–1840 (2004). ArticleCASPubMed Google Scholar
Guo, M. et al. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. J. Anat.207, 813–821 (2005). ArticlePubMedPubMed Central Google Scholar
Nakagawa, T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. Am. J. Physiol. Renal Physiol.292, F1665–F1672 (2007). ArticleCASPubMed Google Scholar
Nakagawa, T. et al. Uncoupling of vascular endothelial growth factor with nitric oxide as a mechanism for diabetic vasculopathy. J. Am. Soc. Nephrol.17, 736–745 (2006). ArticleCASPubMed Google Scholar
Huang, P. L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature377, 239–242 (1995). ArticleCASPubMed Google Scholar
Barber, A. J. et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest. Ophthalmol. Vis. Sci.46, 2210–2218 (2005). ArticlePubMed Google Scholar
Feit-Leichman, R. A. et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest. Ophthalmol. Vis. Sci.46, 4281–4287 (2005). ArticlePubMed Google Scholar
Barber, A. J., Antonetti, D. A. & Gardner, T. W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest. Ophthalmol. Vis. Sci.41, 3561–3568 (2000). CASPubMed Google Scholar
Rungger-Brändle, E., Dosso, A. A. & Leuenberger, P. M. Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.41, 1971–1980 (2000). PubMed Google Scholar
Mizutani, M., Gerhardinger, C. & Lorenzi, M. Müller cell changes in human diabetic retinopathy. Diabetes47, 445–449 (1998). ArticleCASPubMed Google Scholar
Li, Q. et al. Diabetic eNOS knockout mice develop accelerated retinopathy. Invest. Ophthalmol. Vis. Sci.51, 5240–5246 (2010). ArticlePubMedPubMed Central Google Scholar
Feng, D. et al. von Willebrand factor and retinal circulation in early-stage retinopathy of type 1 diabetes. Diabetes Care23, 1694–1698 (2000). ArticleCASPubMed Google Scholar
Quiroz, Y. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am. J. Physiol. Renal Physiol.281, F38–F47 (2001). ArticleCASPubMed Google Scholar
Edwards, R. M. & Trizna, W. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors. J. Am. Soc. Nephrol.4, 1127–1132 (1993). CASPubMed Google Scholar
Patzak, A. et al. Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice. Acta Physiol. Scand.181, 439–444 (2004). ArticleCASPubMed Google Scholar
Sánchez-Lozada, L. G. et al. Mild hyperuricemia induces glomerular hypertension in normal rats. Am. J. Physiol. Renal Physiol.283, F1105–F1110 (2002). ArticlePubMed Google Scholar
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev.25, 581–611 (2004). ArticleCASPubMed Google Scholar
Flyvbjerg, A., Schrijvers, B. F., De Vriese, A. S., Tilton, R. G. & Rasch, R. Compensatory glomerular growth after unilateral nephrectomy is VEGF dependent. Am. J. Physiol. Endocrinol. Metab.283, E362–E366 (2002). ArticleCASPubMed Google Scholar
de Vriese, A. S. et al. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J. Am. Soc. Nephrol.12, 993–1000 (2001). CAS Google Scholar
Flyvbjerg, A. et al. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes51, 3090–3094 (2002). ArticleCASPubMed Google Scholar
Sato, W. et al. The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy. Lab. Invest.88, 949–961 (2008). ArticleCASPubMed Google Scholar
Bussolati, B. et al. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am. J. Pathol.159, 993–1008 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kang, D. H., Hughes, J., Mazzali, M., Schreiner, G. F. & Johnson, R. J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol.12, 1448–1457 (2001). CASPubMed Google Scholar
Shimizu, A. et al. Vascular endothelial growth factor165 resolves glomerular inflammation and accelerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. J. Am. Soc. Nephrol.15, 2655–2665 (2004). ArticleCASPubMed Google Scholar
Matsushita, K. et al. Nitric oxide regulates exocytosis by _S_-nitrosylation of _N_-ethylmaleimide-sensitive factor. Cell115, 139–150 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nakayama, T. et al. Endothelial von Willebrand factor release due to eNOS deficiency predisposes to thrombotic microangiopathy in mouse aging kidney. Am. J. Pathol.176, 2198–2208 (2010). ArticleCASPubMedPubMed Central Google Scholar
Farquhar, A., MacDonald, M. K. & Ireland, J. T. The role of fibrin deposition in diabetic glomerulosclerosis: a light, electron and immunofluorescence microscopy study. J. Clin. Pathol.25, 657–667 (1972). ArticleCASPubMedPubMed Central Google Scholar
Morgan, C. L. et al. The prevalence of multiple diabetes-related complications. Diabet. Med.17, 146–151 (2000). ArticleCASPubMed Google Scholar
El-Asrar, A. M., Al-Rubeaan, K. A., Al-Amro, S. A., Moharram, O. A. & Kangave, D. Retinopathy as a predictor of other diabetic complications. Int. Ophthalmol.24, 1–11 (2001). ArticleCASPubMed Google Scholar
Rossing, P., Hougaard, P. & Parving, H. H. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care25, 859–864 (2002). ArticlePubMed Google Scholar
The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med.342, 381–389 (2000).
UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ317, 703–713 (1998).
Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med.345, 861–869 (2001). ArticleCASPubMed Google Scholar
Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med.329, 1456–1462 (1993). ArticleCASPubMed Google Scholar
Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med.345, 851–860 (2001). ArticleCASPubMed Google Scholar
Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet355, 253–259 (2000).
Patel, A. et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet370, 829–840 (2007). ArticleCASPubMed Google Scholar
Chaturvedi, N. et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect. 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet372, 1394–1402 (2008). ArticleCASPubMed Google Scholar
Sjølie, A. K. et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect. 2): a randomised placebo-controlled trial. Lancet372, 1385–1393 (2008). ArticleCASPubMed Google Scholar
Bilous, R. et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann. Intern. Med.151, 11–20 (2009). ArticlePubMed Google Scholar
Mathiesen, E. R., Hommel, E., Giese, J. & Parving, H. H. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ303, 81–87 (1991). ArticleCASPubMedPubMed Central Google Scholar
Berlowitz, D. R. et al. Hypertension management in patients with diabetes: the need for more aggressive therapy. Diabetes Care26, 355–359 (2003). ArticlePubMed Google Scholar
Tomlinson, J. W., Owen, K. R. & Close, C. F. Treating hypertension in diabetic nephropathy. Diabetes Care26, 1802–1805 (2003). ArticleCASPubMed Google Scholar
Sato, A., Hayashi, K., Naruse, M. & Saruta, T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension41, 64–68 (2003). ArticleCASPubMed Google Scholar
Schjoedt, K. J., Andersen, S., Rossing, P., Tarnow, L. & Parving, H. H. Aldosterone escape during blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia47, 1936–1939 (2004). ArticleCASPubMed Google Scholar
Mehdi, U. F., Adams-Huet, B., Raskin, P., Vega, G. L. & Toto, R. D. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J. Am. Soc. Nephrol.20, 2641–2650 (2009). ArticleCASPubMedPubMed Central Google Scholar
Papaioannou, G. I. et al. Brachial artery reactivity in asymptomatic patients with type 2 diabetes mellitus and microalbuminuria (from the Detection of Ischemia in Asymptomatic Diabetics-brachial artery reactivity study). Am. J. Cardiol.94, 294–299 (2004). ArticlePubMed Google Scholar
Stehouwer, C. D. et al. Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction—the Hoorn Study. Kidney Int. Suppl. S42–S44 (2004).
Schalkwijk, C. G., Smulders, R. A., Lambert, J., Donker, A. J. & Stehouwer, C. D. ACE-inhibition modulates some endothelial functions in healthy subjects and in normotensive type 1 diabetic patients. Eur. J. Clin. Invest.30, 853–860 (2000). ArticleCASPubMed Google Scholar
Perregaux, D. et al. Brachial vascular reactivity in blacks. Hypertension36, 866–871 (2000). ArticleCASPubMed Google Scholar
Dries, D. L. et al. Racial differences in the outcome of left ventricular dysfunction. N. Engl. J. Med.340, 609–616 (1999). ArticleCASPubMed Google Scholar
Dries, D. L., Strong, M. H., Cooper, R. S. & Drazner, M. H. Efficacy of angiotensin-converting enzyme inhibition in reducing progression from asymptomatic left ventricular dysfunction to symptomatic heart failure in black and white patients. J. Am. Coll. Cardiol.40, 311–317 (2002). ArticleCASPubMed Google Scholar
Julius, S. et al. Cardiovascular risk reduction in hypertensive black patients with left ventricular hypertrophy: the LIFE study. J. Am. Coll. Cardiol.43, 1047–1055 (2004). ArticlePubMed Google Scholar
Jawa, A., Nachimuthu, S., Pendergrass, M., Asnani, S. & Fonseca, V. Impaired vascular reactivity in African-American patients with type 2 diabetes mellitus and microalbuminuria or proteinuria despite angiotensin-converting enzyme inhibitor therapy. J. Clin. Endocrinol. Metab.91, 31–35 (2006). ArticleCASPubMed Google Scholar
Muldowney, J. A. 3rd, Davis, S. N., Vaughan, D. E. & Brown, N. J. NO synthase inhibition increases aldosterone in humans. Hypertension44, 739–745 (2004). ArticleCASPubMed Google Scholar
Hanke, C. J. & Campbell, W. B. Endothelial cell nitric oxide inhibits aldosterone synthesis in zona glomerulosa cells: modulation by oxygen. Am. J. Physiol. Endocrinol. Metab.279, E846–E854 (2000). ArticleCASPubMed Google Scholar
Arima, S. et al. Endothelium-derived nitric oxide modulates vascular action of aldosterone in renal arteriole. Hypertension43, 352–357 (2004). ArticleCASPubMed Google Scholar
Ikeda, H. et al. Spironolactone suppresses inflammation and prevents L-NAME-induced renal injury in rats. Kidney Int.75, 147–155 (2009). ArticleCASPubMed Google Scholar
Sainz, J. M. et al. Effects of nitric oxide on aldosterone synthesis and nitric oxide synthase activity in glomerulosa cells from bovine adrenal gland. Endocrine24, 61–71 (2004). ArticleCASPubMed Google Scholar
Lee, S. H. et al. Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am. J. Physiol. Renal Physiol.297, F1381–F1390 (2009). ArticleCASPubMed Google Scholar
Wilkinson-Berka, J. L., Tan, G., Jaworski, K. & Miller, A. G. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ. Res.104, 124–133 (2009). ArticleCASPubMed Google Scholar
Kosugi, T., Heinig, M., Nakayama, T., Matsuo, S. & Nakagawa, T. eNOS knockout mice with advanced diabetic nephropathy have less benefit from renin–angiotensin blockade than from aldosterone receptor antagonists. Am. J. Pathol.49, 51–54 (2010). Google Scholar
Wilkinson-Berka, J. L., Tan, G., Jaworski, K. & Miller, A. G. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ. Res.104, 124–133 (2009). ArticleCASPubMed Google Scholar
Tousoulis, D. et al. Novel therapies targeting vascular endothelium. Endothelium13, 411–421 (2006). ArticleCASPubMed Google Scholar