Roles of mTOR complexes in the kidney: implications for renal disease and transplantation (original) (raw)
Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo)28, 721–726 (1975). ArticleCAS Google Scholar
Calne, R. Y. et al. Rapamycin for immunosuppression in organ allografting. Lancet2, 227 (1989). ArticleCASPubMed Google Scholar
Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol.30, 39–68 (2012). ArticleCASPubMed Google Scholar
Shimobayashi, M. & Hall, M. N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol.15, 155–162 (2014). ArticleCASPubMed Google Scholar
Flinn, R. J., Yan, Y., Goswami, S., Parker, P. J. & Backer, J. M. The late endosome is essential for mTORC1 signaling. Mol. Biol. Cell21, 833–841 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell49, 172–185 (2013). ArticleCASPubMed Google Scholar
Yadav, R. B. et al. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol.14, 3 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fournier, M. J. et al. Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol. Cell. Biol.33, 2285–2301 (2013). ArticleCASPubMedPubMed Central Google Scholar
Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell11, 859–871 (2006). ArticleCASPubMed Google Scholar
Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell144, 757–768 (2011). ArticleCASPubMed Google Scholar
Xie, J. & Proud, C. G. Crosstalk between mTOR complexes. Nat. Cell Biol.15, 1263–1265 (2013). ArticleCASPubMed Google Scholar
Schreiber, K. H. et al. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell14, 265–273 (2015). ArticleCASPubMedPubMed Central Google Scholar
Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22, 159–168 (2006). ArticleCASPubMed Google Scholar
Gaubitz, C. et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell58, 977–988 (2015). ArticleCASPubMed Google Scholar
Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol.7, e38 (2009). ArticleCASPubMed Google Scholar
Brunn, G. J. et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J.15, 5256–5267 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yu, K. et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res.69, 6232–6240 (2009). ArticleCASPubMed Google Scholar
Bendell, J. C. et al. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer121, 3481–3490 (2015). ArticleCASPubMed Google Scholar
Pavenstadt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev.83, 253–307 (2003). ArticleCASPubMed Google Scholar
Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest.121, 2197–2209 (2011). ArticleCASPubMedPubMed Central Google Scholar
Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest.121, 2181–2196 (2011). ArticleCASPubMedPubMed Central Google Scholar
Groth, C. G. et al. Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation67, 1036–1042 (1999). ArticleCASPubMed Google Scholar
Schwarz, C., Bohmig, G. A., Steininger, R., Mayer, G. & Oberbauer, R. Impaired phosphate handling of renal allografts is aggravated under rapamycin-based immunosuppression. Nephrol. Dial. Transplant.16, 378–382 (2001). ArticleCASPubMed Google Scholar
da Silva, C. A. et al. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am. J. Physiol. Renal Physiol.297, F916–F922 (2009). ArticleCASPubMed Google Scholar
Wu, M. S., Hung, C. C. & Chang, C. T. Renal calcium handling after rapamycin conversion in chronic allograft dysfunction. Transpl. Int.19, 140–145 (2006). ArticleCASPubMed Google Scholar
Tataranni, T. et al. Rapamycin-induced hypophosphatemia and insulin resistance are associated with mTORC2 activation and Klotho expression. Am. J. Transplant.11, 1656–1664 (2011). ArticleCASPubMed Google Scholar
Haller, M. et al. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS ONE7, e39229 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kempe, D. S. et al. Rapamycin-induced phosphaturia. Nephrol. Dial. Transplant.25, 2938–2944 (2010). ArticleCASPubMed Google Scholar
Gleixner, E. M. et al. V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Rep.8, 10–19 (2014). ArticleCASPubMed Google Scholar
Grahammer, F. et al. mTOR regulates endocytosis and nutrient transport in proximal tubular cells. J. Am. Soc. Nephrol.http://dx.doi.org/10.1681/ASN.2015111224 (2016).
Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA111, E2817–E2826 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lang, F. & Pearce, D. Regulation of the epithelial Na+ channel by the mTORC2/SGK1 pathway. Nephrol. Dial. Transplant.31, 200–205 (2015). PubMedPubMed Central Google Scholar
Gleason, C. E. et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J. Clin. Invest.125, 117–128 (2015). ArticlePubMed Google Scholar
Canaud, G. et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N. Engl. J. Med.371, 303–312 (2014). ArticleCASPubMed Google Scholar
Jindra, P. T., Jin, Y. P., Rozengurt, E. & Reed, E. F. HLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway. J. Immunol.180, 2357–2366 (2008). ArticleCASPubMed Google Scholar
Jindra, P. T., Jin, Y. P., Jacamo, R., Rozengurt, E. & Reed, E. F. MHC class I and integrin ligation induce ERK activation via an mTORC2-dependent pathway. Biochem. Biophys. Res. Commun.369, 781–787 (2008). ArticleCASPubMedPubMed Central Google Scholar
de Sandes-Freitas, T. V. et al. Subclinical lesions and donor-specific antibodies in kidney transplant recipients receiving tacrolimus-based immunosuppressive regimen followed by early conversion to sirolimus. Transplantation99, 2372–2381 (2015). ArticleCASPubMed Google Scholar
Liefeldt, L. et al. Donor-specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation. Am. J. Transplant.12, 1192–1198 (2012). ArticleCASPubMed Google Scholar
Croze, L. E. et al. Conversion to mammalian target of rapamycin inhibitors increases risk of de novo donor-specific antibodies. Transpl. Int.27, 775–783 (2014). ArticleCASPubMed Google Scholar
Lepin, E. J. et al. Phosphorylated S6 ribosomal protein: a novel biomarker of antibody-mediated rejection in heart allografts. Am. J. Transplant.6, 1560–1571 (2006). ArticleCASPubMed Google Scholar
Jindra, P. T. et al. Anti-MHC class I antibody activation of proliferation and survival signaling in murine cardiac allografts. J. Immunol.180, 2214–2224 (2008). ArticleCASPubMed Google Scholar
Ganley, I. G. et al. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem.284, 12297–12305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell20, 1981–1991 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fougeray, S. & Pallet, N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat. Rev. Nephrol.11, 34–45 (2015). ArticleCASPubMed Google Scholar
Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest.120, 1084–1096 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol.26, 1040–1052 (2015). ArticleCASPubMed Google Scholar
Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol.22, 902–913 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science292, 288–290 (2001). ArticleCASPubMed Google Scholar
Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature426, 620 (2003). ArticleCASPubMed Google Scholar
Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol.14, 885–890 (2004). ArticleCASPubMedPubMed Central Google Scholar
Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature493, 338–345 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhuo, L. et al. Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging. Mech. Ageing Dev.130, 700–708 (2009). ArticleCASPubMed Google Scholar
Zhang, S. et al. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence. Mech. Ageing Dev.133, 387–400 (2012). ArticleCASPubMed Google Scholar
Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol.15, 599–614 (2015). ArticleCASPubMedPubMed Central Google Scholar
Fantus, D. & Thomson, A. W. Evolving perspectives of mTOR complexes in immunity and transplantation. Am. J. Transplant.15, 891–902 (2015). ArticleCASPubMed Google Scholar
Lo, Y. C., Lee, C. F. & Powell, J. D. Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Curr. Opin. Organ. Transplant19, 363–371 (2014). ArticleCASPubMedPubMed Central Google Scholar
Turner, J. E., Paust, H. J., Steinmetz, O. M. & Panzer, U. The Th17 immune response in renal inflammation. Kidney Int.77, 1070–1075 (2010). ArticleCASPubMed Google Scholar
Rogers, N. M., Ferenbach, D. A., Isenberg, J. S., Thomson, A. W. & Hughes, J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat. Rev. Nephrol.10, 625–643 (2014). ArticleCASPubMedPubMed Central Google Scholar
Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med.21, 688–697 (2015). ArticleCASPubMedPubMed Central Google Scholar
Batal, I. et al. Dendritic cells in kidney transplant biopsy samples are associated with T cell infiltration and poor allograft survival. J. Am. Soc. Nephrol.26, 3102–3113 (2015). ArticleCASPubMedPubMed Central Google Scholar
Turnquist, H. R. et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J. Immunol.178, 7018–7031 (2007). ArticleCASPubMed Google Scholar
Hackstein, H. et al. Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood101, 4457–4463 (2003). ArticleCASPubMed Google Scholar
Turnquist, H. R. et al. mTOR and GSK-3 shape the CD4+ T-cell stimulatory and differentiation capacity of myeloid DCs after exposure to LPS. Blood115, 4758–4769 (2010). ArticleCASPubMedPubMed Central Google Scholar
Amiel, E. et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol.189, 2151–2158 (2012). ArticleCASPubMed Google Scholar
Brown, J., Wang, H., Suttles, J., Graves, D. T. & Martin, M. Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J. Biol. Chem.286, 44295–44305 (2011). ArticleCASPubMedPubMed Central Google Scholar
Raich-Regue, D. et al. mTORC2 deficiency in myeloid dendritic cells enhances their allogeneic Th1 and Th17 stimulatory ability after TLR4 ligation in vitro and in vivo. J. Immunol.194, 4767–4776 (2015). ArticleCASPubMed Google Scholar
Raich-Regue, D. et al. Intratumoral delivery of mTORC2-deficient dendritic cells inhibits B16 melanoma growth by promoting CD8C effector T cell responses. Oncoimmunologyhttp://dx.doi.org/10.1080/2162402X.2016.1146841 (2016).
Tian, L., Lu, L., Yuan, Z., Lamb, J. R. & Tam, P. K. Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation77, 183–189 (2004). ArticleCASPubMed Google Scholar
Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med.205, 565–574 (2008). ArticleCASPubMedPubMed Central Google Scholar
Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood105, 4743–4748 (2005). ArticleCASPubMed Google Scholar
Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity30, 832–844 (2009). ArticleCASPubMedPubMed Central Google Scholar
Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol.12, 295–303 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ray, J. P. et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity43, 690–702 (2015). ArticleCASPubMedPubMed Central Google Scholar
Matz, M. et al. Effects of sotrastaurin, mycophenolic acid and everolimus on human B-lymphocyte function and activation. Transpl. Int.25, 1106–1116 (2012). ArticleCASPubMed Google Scholar
Benhamron, S. & Tirosh, B. Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation andloss of marginal zone B cells. Eur. J. Immunol.41, 2390–2396 (2011). ArticleCASPubMed Google Scholar
Keating, R. et al. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nat. Immunol.14, 1266–1276 (2013). ArticleCASPubMedPubMed Central Google Scholar
Limon, J. J. et al. mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proc. Natl Acad. Sci. USA111, E5076–E5085 (2014). ArticleCASPubMedPubMed Central Google Scholar
Jin, Y. P., Valenzuela, N. M., Ziegler, M. E., Rozengurt, E. & Reed, E. F. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus. Am. J. Transplant.14, 806–819 (2014). ArticleCASPubMedPubMed Central Google Scholar
Marcais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol.15, 749–757 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shin, B. H. et al. Regulation of anti-HLA antibody-dependent natural killer cell activation by immunosuppressive agents. Transplantation97, 294–300 (2014). ArticleCASPubMed Google Scholar
Prevot, N. et al. Mammalian target of rapamycin complex 2 regulates invariant NKT cell development and function independent of promyelocytic leukemia zinc-finger. J. Immunol.194, 223–230 (2015). ArticleCASPubMed Google Scholar
Ochiai, T. et al. Effects of rapamycin in experimental organ allografting. Transplantation56, 15–19 (1993). ArticleCASPubMed Google Scholar
Stepkowski, S. M., Chen, H., Daloze, P. & Kahan, B. D. Rapamycin, a potent immunosuppressive drug for vascularized heart, kidney, and small bowel transplantation in the rat. Transplantation51, 22–26 (1991). ArticleCASPubMed Google Scholar
Poston, R. S. et al. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation100, 67–74 (1999). ArticleCASPubMed Google Scholar
Ikonen, T. S. et al. Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in non-human primates. Transplantation70, 969–975 (2000). ArticleCASPubMed Google Scholar
Nakamura, T., Nakao, T., Yoshimura, N. & Ashihara, E. Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells. Am. J. Transplant.15, 2364–2377 (2015). ArticleCASPubMed Google Scholar
Page, A. et al. CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am. J. Transplant.12, 115–125 (2012). ArticleCASPubMed Google Scholar
Pan, H. et al. The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation37, 756–765 (2014). ArticleCASPubMed Google Scholar
Rosborough, B. R. et al. Adenosine triphosphate-competitive mTOR inhibitors: a new class of immunosuppressive agents that inhibit allograft rejection. Am. J. Transplant.14, 2173–2180 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. et al. Abrogation of chronic rejection in rat model system involves modulation of the mTORC1 and mTORC2 pathways. Transplantation96, 782–790 (2013). ArticlePubMed Google Scholar
Murgia, M. G., Jordan, S. & Kahan, B. D. The side effect profile of sirolimus: a phase I study in quiescent cyclosporine-prednisone-treated renal transplant patients. Kidney Int.49, 209–216 (1996). ArticleCASPubMed Google Scholar
MacDonald, A. S. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation71, 271–280 (2001). ArticleCASPubMed Google Scholar
Kahan, B. D., Julian, B. A., Pescovitz, M. D., Vanrenterghem, Y. & Neylan, J. Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in caucasian recipients of mismatched primary renal allografts: a phase II trial. Rapamune Study Group. Transplantation68, 1526–1532 (1999). ArticleCASPubMed Google Scholar
Kahan, B. D. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune, US Study Group. Lancet356, 194–202 (2000). ArticleCASPubMed Google Scholar
Kreis, H. et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation69, 1252–1260 (2000). ArticleCASPubMed Google Scholar
Kreis, H. et al. Long-term benefits with sirolimus-based therapy after early cyclosporine withdrawal. J. Am. Soc. Nephrol.15, 809–817 (2004). ArticleCASPubMed Google Scholar
Ekberg, H. et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med.357, 2562–2575 (2007). ArticleCASPubMed Google Scholar
Flechner, S. M. et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am. J. Transplant.11, 1633–1644 (2011). ArticleCASPubMed Google Scholar
Webster, A. C., Lee, V. W., Chapman, J. R. & Craig, J. C. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst. Rev., CD004290 (2006).
Lim, W. H. et al. A systematic review of conversion from calcineurin inhibitor to mammalian target of rapamycin inhibitors for maintenance immunosuppression in kidney transplant recipients. Am. J. Transplant.14, 2106–2119 (2014). ArticleCASPubMed Google Scholar
Su, L. et al. Everolimus-based calcineurin-inhibitor sparing regimens for kidney transplant recipients: a systematic review and meta-analysis. Int. Urol. Nephrol.46, 2035–2044 (2014). ArticleCASPubMed Google Scholar
Murakami, N., Riella, L. V. & Funakoshi, T. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: a systematic review and meta-analysis. Am. J. Transplant.14, 2317–2327 (2014). ArticleCASPubMed Google Scholar
Mandelbrot, D. A. et al. Effect of ramipril on urinary protein excretion in maintenance renal transplant patients converted to sirolimus. Am. J. Transplant.15, 3174–3184 (2015). ArticleCASPubMed Google Scholar
Lewkowicz, N. et al. Dysfunction of CD4+CD25high T regulatory cells in patients with recurrent aphthous stomatitis. J. Oral Pathol. Med.37, 454–461 (2008). ArticlePubMed Google Scholar
Morelon, E. et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation72, 787–790 (2001). ArticleCASPubMed Google Scholar
Joannides, R. et al. Immunosuppressant regimen based on sirolimus decreases aortic stiffness in renal transplant recipients in comparison to cyclosporine. Am. J. Transplant.11, 2414–2422 (2011). ArticleCASPubMed Google Scholar
Thierry, A. et al. Long-term impact of subclinical inflammation diagnosed by protocol biopsy one year after renal transplantation. Am. J. Transplant.11, 2153–2161 (2011). ArticleCASPubMed Google Scholar
Heilman, R. L. et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. Transplantation92, 767–773 (2011). ArticleCASPubMed Google Scholar
Glotz, D. et al. Thymoglobulin induction and sirolimus versus tacrolimus in kidney transplant recipients receiving mycophenolate mofetil and steroids. Transplantation89, 1511–1517 (2010). ArticleCASPubMed Google Scholar
Li, H. & Pauza, C. D. Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro. Cancer Immunol. Immunother.60, 361–370 (2011). ArticleCASPubMed Google Scholar
Clippinger, A. J., Maguire, T. G. & Alwine, J. C. The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J. Virol.85, 3930–3939 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hirsch, H. H., Yakhontova, K., Lu, M. & Manzetti, J. BK polyomavirus replication in renal tubular epithelial cells is inhibited by sirolimus, but activated by tacrolimus through a pathway involving FKBP-12. Am. J. Transplant.16, 821–832 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ferrer, I. R. et al. Cutting edge: rapamycin augments pathogen-specific but not graft-reactive CD8+ T cell responses. J. Immunol.185, 2004–2008 (2010). ArticleCASPubMed Google Scholar
Nashan, B. et al. Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation93, 1075–1085 (2012). ArticleCASPubMed Google Scholar
Tedesco-Silva, H. et al. Reduced incidence of cytomegalovirus infection in kidney transplant recipients receiving everolimus and reduced tacrolimus doses. Am. J. Transplant.15, 2655–2664 (2015). ArticleCASPubMed Google Scholar
Polanco, N. et al. Everolimus-based immunosuppression therapy for BK virus nephropathy. Transplant Proc.47, 57–61 (2015). ArticleCASPubMed Google Scholar
Knoll, G. A. et al. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ349, g6679 (2014). ArticlePubMedPubMed Central Google Scholar
Diekmann, F. et al. Treatment with sirolimus is associated with less weight gain after kidney transplantation. Transplantation96, 480–486 (2013). ArticleCASPubMed Google Scholar
Halleck, F. et al. An evaluation of sirolimus in renal transplantation. Expert Opin. Drug Metab. Toxicol.8, 1337–1356 (2012). ArticleCASPubMed Google Scholar
Rimes-Stigare, C. et al. Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill; a Swedish multi-centre cohort study. Crit. Care19, 221 (2015). ArticlePubMedPubMed Central Google Scholar
Himmelfarb, J. & Ikizler, T. A. Acute kidney injury: changing lexicography, definitions, and epidemiology. Kidney Int.71, 971–976 (2007). ArticleCASPubMed Google Scholar
Smith, K. D. et al. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J. Am. Soc. Nephrol.14, 1037–1045 (2003). ArticleCASPubMed Google Scholar
McTaggart, R. A. et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am. J. Transplant.3, 416–423 (2003). ArticleCASPubMed Google Scholar
Loverre, A. et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J. Am. Soc. Nephrol.15, 2675–2686 (2004). ArticleCASPubMed Google Scholar
Goncalves, G. M. et al. The role of immunosuppressive drugs in aggravating renal ischemia and reperfusion injury. Transplant Proc.39, 417–420 (2007). ArticleCASPubMed Google Scholar
Fuller, T. F. et al. Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury. Transplantation76, 1594–1599 (2003). ArticleCASPubMed Google Scholar
Inman, S. R. et al. Rapamycin preserves renal function compared with cyclosporine A after ischemia/reperfusion injury. Urology62, 750–754 (2003). ArticlePubMed Google Scholar
Cicora, F. et al. Sirolimus in kidney transplant donors and clinical and histologic improvement in recipients: rat model. Transplant. Proc.42, 365–370 (2010). ArticleCASPubMed Google Scholar
Lieberthal, W. et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am. J. Physiol. Renal Physiol.281, F693–F706 (2001). ArticleCASPubMed Google Scholar
Lui, S. L. et al. Effect of rapamycin on renal ischemia-reperfusion injury in mice. Transpl. Int.19, 834–839 (2006). ArticleCASPubMed Google Scholar
Yang, B. et al. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int.68, 2050–2067 (2005). ArticleCASPubMed Google Scholar
Khan, S. et al. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J. Mol. Cell Cardiol.41, 256–264 (2006). ArticleCASPubMed Google Scholar
Cicora, F. et al. Preconditioning donor with a combination of tacrolimus and rapamacyn to decrease ischaemia-reperfusion injury in a rat syngenic kidney transplantation model. Clin. Exp. Immunol.167, 169–177 (2012). ArticleCASPubMedPubMed Central Google Scholar
Viklicky, O. et al. Effect of sirolimus on renal ischaemia/reperfusion injury in normotensive and hypertensive rats. Transpl. Int.17, 432–441 (2004). CASPubMed Google Scholar
Goncalves, G. M. et al. The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury. Kidney Int.70, 1742–1749 (2006). ArticleCASPubMed Google Scholar
Nakagawa, S., Nishihara, K., Inui, K. & Masuda, S. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur. J. Pharmacol.696, 143–154 (2012). ArticleCASPubMed Google Scholar
Kezic, A., Thaiss, F., Becker, J. U., Tsui, T. Y. & Bajcetic, M. Effects of everolimus on oxidative stress in kidney model of ischemia/reperfusion injury. Am. J. Nephrol.37, 291–301 (2013). ArticleCASPubMed Google Scholar
Izzedine, H. et al. Acute tubular necrosis associated with mTOR inhibitor therapy: a real entity biopsy-proven. Ann. Oncol.24, 2421–2425 (2013). ArticleCASPubMed Google Scholar
Rai, P. et al. mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN. Am. J. Physiol. Renal Physiol.305, F343–354 (2013). ArticleCASPubMedPubMed Central Google Scholar
Axelsson, J., Rippe, A. & Rippe, B. Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats. Am. J. Physiol. Renal Physiol.298, F1306–F1312 (2010). ArticleCASPubMed Google Scholar
Kuwabara, A., Satoh, M., Tomita, N., Sasaki, T. & Kashihara, N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia53, 2056–2065 (2010). ArticleCASPubMedPubMed Central Google Scholar
McCarthy, E. T. et al. TNF-α increases albumin permeability of isolated rat glomeruli through the generation of superoxide. J. Am. Soc. Nephrol.9, 433–438 (1998). CASPubMed Google Scholar
Axelsson, J., Rippe, A., Oberg, C. M. & Rippe, B. Rapid, dynamic changes in glomerular permeability to macromolecules during systemic angiotensin II (ANG II) infusion in rats. Am. J. Physiol. Renal Physiol.303, F790–F799 (2012). ArticleCASPubMed Google Scholar
Axelsson, J. Rippe, A. & Rippe, B. mTOR inhibition with temsirolimus causes acute increases in glomerular permeability, but inhibits the dynamic permeability actions of puromycin aminonucleoside. Am. J. Physiol. Renal Physiol.308, F1056–F1064 (2015). ArticleCASPubMed Google Scholar
Stylianou, K. et al. Rapamycin induced ultrastructural and molecular alterations in glomerular podocytes in healthy mice. Nephrol. Dial. Transplant.27, 3141–3148 (2012). ArticleCASPubMed Google Scholar
DiJoseph, J. F., Sharma, R. N. & Chang, J. Y. The effect of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation53, 507–513 (1992). ArticleCASPubMed Google Scholar
Di Joseph, J. F. & Sehgal, S. N. Functional and histopathologic effects of rapamycin on mouse kidney. Immunopharmacol. Immunotoxicol.15, 45–56 (1993). ArticleCASPubMed Google Scholar
Andoh, T. F., Burdmann, E. A., Fransechini, N., Houghton, D. C. & Bennett, W. M. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int.50, 1110–1117 (1996). ArticleCASPubMed Google Scholar
DiJoseph, J. F., Mihatsch, M. J. & Sehgal, S. N. Renal effects of rapamycin in the spontaneously hypertensive rat. Transpl. Int.7, 83–88 (1994). ArticleCASPubMed Google Scholar
Grahammer, F., Wanner, N. & Huber, T. B. mTOR controls kidney epithelia in health and disease. Nephrol. Dial. Transplant.29 (Suppl. 1), i9–i18 (2014). ArticlePubMed Google Scholar
Mao, J. et al. Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation. Am. J. Physiol. Renal Physiol.307, F1023–F1032 (2014). ArticleCASPubMed Google Scholar
Jeruschke, S. et al. Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling. PLoS ONE8, e55980 (2013). ArticleCASPubMedPubMed Central Google Scholar
Letavernier, E. et al. Sirolimus interacts with pathways essential for podocyte integrity. Nephrol. Dial. Transplant.24, 630–638 (2009). ArticleCASPubMed Google Scholar
Vollenbroker, B. et al. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am. J. Physiol. Renal Physiol.296, F418–F426 (2009). ArticleCASPubMed Google Scholar
Canaud, G. et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat. Med.19, 1288–1296 (2013). ArticleCASPubMed Google Scholar
Narres, M. et al. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: A systematic review. PLoS ONE11, e0147329 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ibrahim, H. N. & Hostetter, T. H. Diabetic nephropathy. J. Am. Soc. Nephrol.8, 487–493 (1997). CASPubMed Google Scholar
Mori, H. et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem. Biophys. Res. Commun.384, 471–475 (2009). ArticleCASPubMed Google Scholar
Chen, J. K., Chen, J., Thomas, G., Kozma, S. C. & Harris, R. C. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol.297, F585–F593 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sakaguchi, M. et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem. Biophys. Res. Commun.340, 296–301 (2006). ArticleCASPubMed Google Scholar
Yang, Y. et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am. J. Nephrol.27, 495–502 (2007). ArticleCASPubMed Google Scholar
Lloberas, N. et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J. Am. Soc. Nephrol.17, 1395–1404 (2006). ArticleCASPubMed Google Scholar
Eid, A. A. et al. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes62, 2935–2947 (2013). ArticleCASPubMedPubMed Central Google Scholar
Stylianou, K. et al. The PI3K/Akt/mTOR pathway is activated in murine lupus nephritis and downregulated by rapamycin. Nephrol. Dial. Transplant.26, 498–508 (2011). ArticleCASPubMed Google Scholar
Lui, S. L. et al. Rapamycin attenuates the severity of established nephritis in lupus-prone NZB/W F1 mice. Nephrol. Dial. Transplant.23, 2768–2776 (2008). ArticleCASPubMed Google Scholar
Lui, S. L. et al. Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus17, 305–313 (2008). ArticleCASPubMed Google Scholar
Ramos-Barron, A. et al. Prevention of murine lupus disease in (NZBxNZW)F1 mice by sirolimus treatment. Lupus16, 775–781 (2007). ArticleCASPubMed Google Scholar
Warner, L. M., Adams, L. M. & Sehgal, S. N. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum.37, 289–297 (1994). ArticleCASPubMed Google Scholar
Yap, D. Y., Ma, M. K., Tang, C. S. & Chan, T. M. Proliferation signal inhibitors in the treatment of lupus nephritis: preliminary experience. Nephrol. (Carlton)17, 676–680 (2012). ArticleCAS Google Scholar
Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum.54, 2983–2988 (2006). ArticleCASPubMedPubMed Central Google Scholar
Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol.74, 299–323 (2012). ArticleCASPubMed Google Scholar
Ito, N. et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest.91, 1584–1595 (2011). ArticleCASPubMed Google Scholar
Lui, S. L. et al. Rapamycin attenuates the severity of murine adriamycin nephropathy. Am. J. Nephrol.29, 342–352 (2009). ArticleCASPubMed Google Scholar
Ramadan, R. et al. Early treatment with everolimus exerts nephroprotective effect in rats with adriamycin-induced nephrotic syndrome. Nephrol. Dial. Transplant.27, 2231–2241 (2012). ArticleCASPubMed Google Scholar
Keller, K. et al. Everolimus inhibits glomerular endothelial cell proliferation and VEGF, but not long-term recovery in experimental thrombotic microangiopathy. Nephrol. Dial. Transplant.21, 2724–2735 (2006). ArticleCASPubMed Google Scholar
Bagchus, W. M., Hoedemaeker, P. J., Rozing, J. & Bakker, W. W. Glomerulonephritis induced by monoclonal anti-Thy 1.1 antibodies. A sequential histological and ultrastructural study in the rat. Lab Invest.55, 680–687 (1986). CASPubMed Google Scholar
Wittmann, S. et al. The mTOR inhibitor everolimus attenuates the time course of chronic anti-Thy1 nephritis in the rat. Nephron Exp. Nephrol.108, e45–e56 (2008). ArticleCASPubMed Google Scholar
Daniel, C., Ziswiler, R., Frey, B., Pfister, M. & Marti, H. P. Proinflammatory effects in experimental mesangial proliferative glomerulonephritis of the immunosuppressive agent SDZ RAD, a rapamycin derivative. Exp. Nephrol.8, 52–62 (2000). ArticleCASPubMed Google Scholar
Daniel, C. et al. Mechanisms of everolimus-induced glomerulosclerosis after glomerular injury in the rat. Am. J. Transplant.5, 2849–2861 (2005). ArticleCASPubMed Google Scholar
Vogelbacher, R., Wittmann, S., Braun, A., Daniel, C. & Hugo, C. The mTOR inhibitor everolimus induces proteinuria and renal deterioration in the remnant kidney model in the rat. Transplantation84, 1492–1499 (2007). ArticleCASPubMed Google Scholar
Tian, J., Wang, Y., Liu, X., Zhou, X. & Li, R. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. Exp. Biol. Med. (Maywood)240, 936–945 (2015). ArticleCAS Google Scholar
Heymann, W., Hackel, D. B., Harwood, S., Wilson, S. G. & Hunter, J. L. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med.100, 660–664 (1959). ArticleCASPubMed Google Scholar
Farquhar, M. G., Saito, A., Kerjaschki, D. & Orlando, R. A. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J. Am. Soc. Nephrol.6, 35–47 (1995). CASPubMed Google Scholar
Naumovic, R. et al. Effects of rapamycin on active Heymann nephritis. Am. J. Nephrol.27, 379–389 (2007). ArticleCASPubMed Google Scholar
Stratakis, S. et al. Rapamycin ameliorates proteinuria and restores nephrin and podocin expression in experimental membranous nephropathy. Clin. Dev. Immunol.941, 93 (2013). Google Scholar
Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab Invest.91, 992–1006 (2011). ArticleCASPubMed Google Scholar
Kirsch, A. H. et al. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am. J. Physiol. Renal Physiol.303, F569–F575 (2012). ArticleCASPubMed Google Scholar
Cruzado, J. M. et al. Low-dose sirolimus combined with angiotensin-converting enzyme inhibitor and statin stabilizes renal function and reduces glomerular proliferation in poor prognosis IgA nephropathy. Nephrol. Dial. Transplant.26, 3596–3602 (2011). ArticleCASPubMed Google Scholar
Tumlin, J. A. et al. A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol.1, 109–116 (2006). ArticleCASPubMed Google Scholar
Cho, M. E., Hurley, J. K. & Kopp, J. B. Sirolimus therapy of focal segmental glomerulosclerosis is associated with nephrotoxicity. Am. J. Kidney Dis.49, 310–317 (2007). ArticleCASPubMed Google Scholar
Letavernier, E. et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin. J. Am. Soc. Nephrol.2, 326–333 (2007). ArticleCASPubMed Google Scholar
Patel, P., Pal, S., Ashley, C., Sweny, P. & Burns, A. Combination therapy with sirolimus (rapamycin) and tacrolimus (FK-506) in treatment of refractory minimal change nephropathy, a clinical case report. Nephrol. Dial. Transplant.20, 985–987 (2005). ArticlePubMed Google Scholar
Ong, A. C., Devuyst, O., Knebelmann, B. & Walz, G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet385, 1993–2002 (2015). ArticlePubMed Google Scholar
Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med.359, 1477–1485 (2008). ArticleCASPubMed Google Scholar
Tao, Y., Kim, J., Schrier, R. W. & Edelstein, C. L. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol.16, 46–51 (2005). ArticleCASPubMed Google Scholar
Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA103, 5466–5471 (2006). ArticleCASPubMedPubMed Central Google Scholar
Renken, C., Fischer, D. C., Kundt, G., Gretz, N. & Haffner, D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant.26, 92–100 (2011). ArticleCASPubMed Google Scholar
Belibi, F., Ravichandran, K., Zafar, I., He, Z. & Edelstein, C. L. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol.300, F236–F244 (2011). ArticleCASPubMed Google Scholar
Distefano, G. et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell. Biol.29, 2359–2371 (2009). ArticleCASPubMedPubMed Central Google Scholar
Boletta, A. Emerging evidence of a link between the polycystins and the mTOR pathways. Pathog.2, 6 (2009). Google Scholar
Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA108, 2462–2467 (2011). ArticleCASPubMedPubMed Central Google Scholar
Huber, T. B., Walz, G. & Kuehn, E. W. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int.79, 502–511 (2011). ArticleCASPubMed Google Scholar
Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med.363, 820–829 (2010). ArticleCASPubMed Google Scholar
Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med.363, 830–840 (2010). ArticleCASPubMed Google Scholar
Grantham, J. J., Bennett, W. M. & Perrone, R. D. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med.364, 286–287 (2011). ArticleCASPubMed Google Scholar
Levey, A. S. & Stevens, L. A. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med.364, 287 (2011). CASPubMed Google Scholar
Novalic, Z. et al. Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J. Am. Soc. Nephrol.23, 842–853 (2012). ArticleCASPubMedPubMed Central Google Scholar
Riegersperger, M., Herkner, H. & Sunder-Plassmann, G. Pulsed oral sirolimus in advanced autosomal-dominant polycystic kidney disease (Vienna RAP Study): study protocol for a randomized controlled trial. Trials16, 182 (2015). ArticleCASPubMedPubMed Central Google Scholar
Braun, W. E., Schold, J. D., Stephany, B. R., Spirko, R. A. & Herts, B. R. Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study. Clin. J. Am. Soc. Nephrol.9, 881–888 (2014). ArticlePubMedPubMed Central Google Scholar
Ravichandran, K. et al. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2. Hum. Mol. Genet.23, 4919–4931 (2014). ArticleCASPubMedPubMed Central Google Scholar
Jain, S., Bicknell, G. R., Whiting, P. H. & Nicholson, M. L. Rapamycin reduces expression of fibrosis-associated genes in an experimental model of renal ischaemia reperfusion injury. Transplant Proc.33, 556–558 (2001). ArticleCASPubMed Google Scholar
Jolicoeur, E. M. et al. Combination therapy of mycophenolate mofetil and rapamycin in prevention of chronic renal allograft rejection in the rat. Transplantation75, 54–59 (2003). ArticleCASPubMed Google Scholar
Rangan, G. K. & Coombes, J. D. Renoprotective effects of sirolimus in non-immune initiated focal segmental glomerulosclerosis. Nephrol. Dial. Transplant.22, 2175–2182 (2007). ArticleCASPubMed Google Scholar
Wu, M. J. et al. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int.69, 2029–2036 (2006). ArticleCASPubMed Google Scholar
Bonegio, R. G. et al. Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J. Am. Soc. Nephrol.16, 2063–2072 (2005). ArticleCASPubMed Google Scholar
Kramer, S. et al. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat. Am. J. Physiol. Renal Physiol.294, F440–F449 (2008). ArticleCASPubMed Google Scholar
Li, J. et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int.88, 515–527 (2015). ArticleCASPubMedPubMed Central Google Scholar
Grahammer, F. Halting renal fibrosis: an unexpected role for mTORC2 signaling. Kidney Int.88, 437–439 (2015). ArticleCASPubMed Google Scholar
Chen, G. et al. Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS ONE7, e33626 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rahimi, R. A. et al. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-β. Cancer Res.69, 84–93 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dey, N., Ghosh-Choudhury, N., Kasinath, B. S. & Choudhury, G. G. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS ONE7, e42316 (2012). ArticleCASPubMedPubMed Central Google Scholar
Koch, M., Mengel, M., Poehnert, D. & Nashan, B. Effects of everolimus on cellular and humoral immune processes leading to chronic allograft nephropathy in a rat model with sensitized recipients. Transplantation83, 498–505 (2007). ArticleCASPubMed Google Scholar
Viklicky, O. et al. SDZ-RAD prevents manifestation of chronic rejection in rat renal allografts. Transplantation69, 497–502 (2000). ArticleCASPubMed Google Scholar
Lutz, J., Zou, H., Liu, S., Antus, B. & Heemann, U. Apoptosis and treatment of chronic allograft nephropathy with everolimus. Transplantation76, 508–515 (2003). ArticleCASPubMed Google Scholar
Luo, L., Sun, Z. & Luo, G. Rapamycin is less fibrogenic than Cyclosporin A as demonstrated in a rat model of chronic allograft nephropathy. J. Surg. Res.179, e255–263 (2013). ArticleCASPubMed Google Scholar
Palin, N. K., Savikko, J. & Koskinen, P. K. Sirolimus inhibits lymphangiogenesis in rat renal allografts, a novel mechanism to prevent chronic kidney allograft injury. Transpl. Int.26, 195–205 (2013). ArticleCASPubMed Google Scholar
Pontrelli, P. et al. Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation85, 125–134 (2008). ArticleCASPubMed Google Scholar
Diekmann, F. et al. Mammalian target of rapamycin inhibition halts the progression of proteinuria in a rat model of reduced renal mass. J. Am. Soc. Nephrol.18, 2653–2660 (2007). ArticleCASPubMed Google Scholar
Kurdian, M. et al. Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model. PLoS ONE7, e32516 (2012). ArticleCASPubMedPubMed Central Google Scholar
Budde, K. & Gaedeke, J. Tuberous sclerosis complex-associated angiomyolipomas: focus on mTOR inhibition. Am. J. Kidney Dis.59, 276–283 (2012). ArticleCASPubMed Google Scholar
Hallett, L., Foster, T., Liu, Z., Blieden, M. & Valentim, J. Burden of disease and unmet needs in tuberous sclerosis complex with neurological manifestations: systematic review. Curr. Med. Res. Opin.27, 1571–1583 (2011). ArticlePubMed Google Scholar
Osborne, J. P., Fryer, A. & Webb, D. Epidemiology of tuberous sclerosis. Ann. NY Acad. Sci.615, 125–127 (1991). ArticleCASPubMed Google Scholar
Curatolo, P. et al. The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: Evidence-based and expert opinions. Drugs76, 551–565 (2016). ArticleCASPubMed Google Scholar
Kotulska, K., Borkowska, J. & Jozwiak, S. Possible prevention of tuberous sclerosis complex lesions. Pediatrics132, e239–242 (2013). ArticlePubMed Google Scholar
Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med.358, 140–151 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dabora, S. L. et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLoS ONE6, e23379 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cabrera-Lopez, C. et al. Assessing the effectiveness of rapamycin on angiomyolipoma in tuberous sclerosis: a two years trial. Orphanet J. Rare Dis.7, 87 (2012). ArticlePubMedPubMed Central Google Scholar
Staehler, M. et al. Nephron-sparing resection of angiomyolipoma after sirolimus pretreatment in patients with tuberous sclerosis. Int. Urol. Nephrol.44, 1657–1661 (2012). ArticlePubMed Google Scholar
Bissler, J. J. et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet381, 817–824 (2013). ArticleCASPubMed Google Scholar
Bissler, J. J. et al. Everolimus for renal angiomyolipoma in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: extension of a randomized controlled trial. Nephrol. Dial. Transplant.31, 111–119 (2016). ArticleCASPubMed Google Scholar
Hutson, T. E. et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol.32, 760–767 (2014). ArticleCASPubMed Google Scholar
Flaherty, K. T. et al. BEST: a randomized Phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma—a trial of the ECOG-ACRIN Cancer Research Group (E2804). J. Clin. Oncol.33, 2384–2391 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wander, S. A., Hennessy, B. T. & Slingerland, J. M. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J. Clin. Invest.121, 1231–1241 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zheng, B. et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett.357, 468–475 (2015). ArticleCASPubMed Google Scholar
Powles, T. et al. A randomised Phase 2 Study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur. Urol.69, 450–456 (2015). ArticleCASPubMed Google Scholar
Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat. Med.8, 128–135 (2002). ArticleCASPubMed Google Scholar
Nichols, L. A., Adang, L. A. & Kedes, D. H. Rapamycin blocks production of KSHV/HHV8: insights into the anti-tumor activity of an immunosuppressant drug. PLoS ONE6, e14535 (2011). ArticleCASPubMedPubMed Central Google Scholar
Roy, S. & Arav-Boger, R. New cell-signaling pathways for controlling cytomegalovirus replication. Am. J. Transplant.14, 1249–1258 (2014). ArticleCASPubMedPubMed Central Google Scholar
Stallone, G. et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N. Engl. J. Med.352, 1317–1323 (2005). ArticleCASPubMed Google Scholar
Geissler, E. K. Post-transplantation malignancies: here today, gone tomorrow? Nat. Rev. Clin. Oncol.12, 705–717 (2015). ArticleCASPubMed Google Scholar
Geissler, E. K. et al. Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label Phase 3 trial. Transplantation100, 116–125 (2016). ArticleCASPubMed Google Scholar
Halleck, F. & Budde, K. Transplantation: Sirolimus for secondary SCC prevention in renal transplantation. Nat. Rev. Nephrol.8, 687–689 (2012). ArticleCASPubMed Google Scholar
Hosseini-Moghaddam, S. M., Soleimanirahbar, A., Mazzulli, T., Rotstein, C. & Husain, S. Post renal transplantation Kaposi's sarcoma: a review of its epidemiology, pathogenesis, diagnosis, clinical aspects, and therapy. Transpl. Infect. Dis.14, 338–345 (2012). ArticleCASPubMed Google Scholar
Campbell, S. B., Walker, R., Tai, S. S., Jiang, Q. & Russ, G. R. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am. J. Transplant.12, 1146–1156 (2012). ArticleCASPubMed Google Scholar
Euvrard, S. et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med.367, 329–339 (2012). ArticleCASPubMed Google Scholar
Di Paolo, S., Teutonico, A., Ranieri, E., Gesualdo, L. & Schena, P. F. Monitoring antitumor efficacy of rapamycin in Kaposi sarcoma. Am. J. Kidney Dis.49, 462–470 (2007). ArticleCASPubMed Google Scholar
Yanik, E. L. et al. Sirolimus use and cancer incidence among US kidney transplant recipients. Am. J. Transplant.15, 129–136 (2015). ArticleCASPubMed Google Scholar
Raich-Regue, D., Rosborough, B. R., Turnquist, H. R. & Thomson, A. W. Myeloid dendritic cell-specific mTORC2 deficiency enhances alloreactive Th1 and Th17 cell responses and skin graft rejection. Am J. Transplant14, 18[Abstract 584] (2014). Google Scholar
Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity29, 565–577 (2008). ArticleCASPubMed Google Scholar
Haidinger, M. et al. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J. Immunol.185, 3919–3931 (2010). ArticleCASPubMed Google Scholar
Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI3K-mTOR-p70S6K pathway. Nat. Immunol.9, 1157–1164 (2008). ArticleCASPubMedPubMed Central Google Scholar
Boor, P. P., Metselaar, H. J., Mancham, S., van der Laan, L. J. & Kwekkeboom, J. Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions. Clin. Exp. Immunol.174, 389–401 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity32, 743–753 (2010). ArticleCASPubMedPubMed Central Google Scholar
Berezhnoy, A., Castro, I., Levay, A., Malek, T. R. & Gilboa, E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J. Clin. Invest.124, 188–197 (2014). ArticleCASPubMed Google Scholar
Liacini, A., Seamone, M. E., Muruve, D. A. & Tibbles, L. A. Anti-BK virus mechanisms of sirolimus and leflunomide alone and in combination: toward a new therapy for BK virus infection. Transplantation90, 1450–1457 (2010). ArticleCASPubMed Google Scholar
McInturff, A. M. et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1α. Blood120, 3118–3125 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vitiello, D., Neagoe, P. E., Sirois, M. G. & White, M. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cell. Mol. Immunol.12, 40–52 (2015). ArticleCASPubMed Google Scholar
He, Y. et al. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol. Biol. Cell24, 3369–3380 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu, L., Gritz, D. & Parent, C. A. PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol. Biol. Cell25, 1446–1457 (2014). ArticlePubMedPubMed Central Google Scholar
Zhang, L. et al. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J. Immunol.193, 1759–1765 (2014). ArticleCASPubMed Google Scholar
Wei, J., Yang, K. & Chi, H. Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J. Immunol.193, 4297–4301 (2014). ArticleCASPubMed Google Scholar
Zhang, S. et al. Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood117, 1228–1238 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. et al. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. J. Clin. Invest.123, 1677–1693 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. et al. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. J. Exp. Med.211, 395–404 (2014). ArticleCASPubMedPubMed Central Google Scholar
Johnson, R. W. et al. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation72, 777–786 (2001). ArticleCASPubMed Google Scholar
Gonwa, T. A., Hricik, D. E., Brinker, K., Grinyo, J. M. & Schena, F. P. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation74, 1560–1567 (2002). ArticleCASPubMed Google Scholar
Oberbauer, R. et al. Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the Rapamune Maintenance Regimen Study. Transplantation76, 364–370 (2003). ArticleCASPubMed Google Scholar
Oberbauer, R. et al. Early cyclosporine withdrawal from a sirolimus-based regimen results in better renal allograft survival and renal function at 48 months after transplantation. Transpl. Int.18, 22–28 (2005). ArticleCASPubMed Google Scholar
Larson, T. S. et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. Am. J. Transplant.6, 514–522 (2006). ArticleCASPubMed Google Scholar
Buchler, M. et al. Sirolimus versus cyclosporine in kidney recipients receiving thymoglobulin, mycophenolate mofetil and a 6-month course of steroids. Am. J. Transplant.7, 2522–2531 (2007). ArticleCASPubMed Google Scholar
Lebranchu, Y. et al. Five-year results of a randomized trial comparing de novo sirolimus and cyclosporine in renal transplantation: the SPIESSER study. Am. J. Transplant.12, 1801–1810 (2012). ArticleCASPubMed Google Scholar
Gatault, P. et al. Eight-year results of the Spiesser study, a randomized trial comparing de novo sirolimus and cyclosporine in renal transplantation. Transpl. Int.29, 41–50 (2016). ArticleCASPubMed Google Scholar
Ekberg, H. et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. Am. J. Transplant.9, 1876–1885 (2009). ArticleCASPubMed Google Scholar
Lebranchu, Y. et al. Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. Am. J. Transplant.9, 1115–1123 (2009). ArticleCASPubMed Google Scholar
Lebranchu, Y. et al. Efficacy and safety of early cyclosporine conversion to sirolimus with continued MMF-four-year results of the Postconcept study. Am. J. Transplant.11, 1665–1675 (2011). ArticleCASPubMed Google Scholar
Guba, M. et al. Renal function, efficacy, and safety of sirolimus and mycophenolate mofetil after short-term calcineurin inhibitor-based quadruple therapy in de novo renal transplant patients: one-year analysis of a randomized multicenter trial. Transplantation90, 175–183 (2010). ArticleCASPubMed Google Scholar
Guba, M. et al. Early conversion to a sirolimus-based, calcineurin-inhibitor-free immunosuppression in the SMART trial: observational results at 24 and 36 months after transplantation. Transpl. Int.25, 416–423 (2012). ArticleCASPubMed Google Scholar
Budde, K. et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet377, 837–847 (2011). ArticleCASPubMed Google Scholar
Budde, K. et al. Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am. J. Transplant15, 119–128 (2015). ArticleCASPubMed Google Scholar
Holdaas, H. et al. Conversion of long-term kidney transplant recipients from calcineurin inhibitor therapy to everolimus: a randomized, multicenter, 24-month study. Transplantation92, 410–418 (2011). ArticleCASPubMed Google Scholar
Weir, M. R. et al. Mycophenolate mofetil-based immunosuppression with sirolimus in renal transplantation: a randomized, controlled Spare-the-Nephron trial. Kidney Int.79, 897–907 (2011). ArticleCASPubMed Google Scholar
Mjornstedt, L. et al. Improved renal function after early conversion from a calcineurin inhibitor to everolimus: a randomized trial in kidney transplantation. Am. J. Transplant12, 2744–2753 (2012). ArticleCASPubMed Google Scholar
Mjornstedt, L. et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation. Transpl. Int.28, 42–51 (2015). ArticleCASPubMed Google Scholar
Budde, K. et al. Renal, efficacy and safety outcomes following late conversion of kidney transplant patients from calcineurin inhibitor therapy to everolimus: the randomized APOLLO study. Clin. Nephrol.83, 11–21 (2015). ArticleCASPubMed Google Scholar
Reitamo, S. et al. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomized controlled trial. Br. J. Dermatol.145, 438–445 (2001). ArticleCASPubMed Google Scholar
Senior, P. A., Paty, B. W., Cockfield, S. M., Ryan, E. A. & Shapiro, A. M. Proteinuria developing after clinical islet transplantation resolves with sirolimus withdrawal and increased tacrolimus dosing. Am. J. Transplant.5, 2318–2323 (2005). ArticlePubMed Google Scholar
Constantinescu, A. R., Liang, M. & Laskow, D. A. Sirolimus lowers myeloperoxidase and p-ANCA titers in a pediatric patient before kidney transplantation. Am. J. Kidney Dis.40, 407–410 (2002). ArticlePubMed Google Scholar
Koening, C. L., Hernandez-Rodriguez, J., Molloy, E. S., Clark, T. M. & Hoffman, G. S. Limited utility of rapamycin in severe, refractory Wegener's granulomatosis. J. Rheumatol36, 116–119 (2009). ArticleCASPubMed Google Scholar
Fervenza, F. C. et al. Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies. Nephrol. Dial. Transplant.19, 1288–1292 (2004). ArticleCASPubMed Google Scholar
Kim, H. J. & Edelstein, C. L. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside. Kidney Res. Clin. Pract.31, 132–138 (2012). ArticlePubMedPubMed Central Google Scholar
Lieberthal, W., Fuhro, R., Andry, C., Patel, V. & Levine, J. S. Rapamycin delays but does not prevent recovery from acute renal failure: role of acquired tubular resistance. Transplantation82, 17–22 (2006). ArticleCASPubMed Google Scholar
Lee, L. et al. Efficacy of a rapamycin analog (CCI-779) and IFN-γ in tuberous sclerosis mouse models. Genes Chromosomes Cancer42, 213–227 (2005). ArticleCASPubMed Google Scholar
Zhang, H. et al. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS ONE8, e54918 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chiarini, F., Evangelisti, C., McCubrey, J. A. & Martelli, A. M. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol. Sci.36, 124–135 (2015). ArticleCASPubMed Google Scholar
Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med.356, 2271–2281 (2007). ArticleCASPubMed Google Scholar
Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet372, 449–456 (2008). ArticleCASPubMed Google Scholar
Mita, M. M. et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J. Clin. Oncol.26, 361–367 (2008). ArticleCASPubMed Google Scholar
Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22, 909–918 (2004). ArticleCASPubMed Google Scholar