Inhibitory conformation of the reactive loop of α1-antitrypsin (original) (raw)
References
Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol.177, 531–556 (1984). ArticleCAS Google Scholar
Huber, R. & Carrell, R.W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry28, 8951–8966 (1989). ArticleCAS Google Scholar
Potempa, J., Korzus, E. & Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem.269, 15957–15960 (1994). CASPubMed Google Scholar
Stein, P.E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature347, 99–102 (1990). ArticleCAS Google Scholar
Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature355, 270–273 (1992). ArticleCAS Google Scholar
Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3Å structure of dimeric antithrombin. Structure2, 257–270 (1994). ArticleCAS Google Scholar
Wei, A., Rubin, H., Cooperman, B.S. & Christianson, D.W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory loop. Nature Struct. Biol.1, 251–258 (1994). ArticleCAS Google Scholar
Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct. Biol.1, 48–54 (1994). ArticleCAS Google Scholar
Wright, H.T. & Scarsdale, J.N. Structural basis for serpin inhibitor activity. Proteins22, 210–225 (1995). ArticleCAS Google Scholar
Lomas, D.A., Evans, D.L., Stone, S.R., Chang, W.-S.W. & Carrell, R.W. The effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry32, 500–508 (1993). ArticleCAS Google Scholar
Mast, A.E., Enghild, J.J. & Salvesen, G. Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry31, 2720–2728 (1992). ArticleCAS Google Scholar
Kwon, K.-S., Kim, J., Shin, H.S. & Yu, M.-H. Single amino acid substitutions of α1-antitrypsin that confer enhancement in thermal stability. J. Biol. Chem.269, 9627–9631 (1994). CASPubMed Google Scholar
Sidhar, S.K., Lomas, D.A., Carrell, R.W. & Foreman, R.C. Mutations which impede loop/sheet polymerisation enhance the secretion of human α1-antitrypsin deficiency variants. J. Biol. Chem.270, 8393–8396 (1995). ArticleCAS Google Scholar
Song, H.K., Lee, K.N., Kwon, K.-S., Yu, M.-H. & Suh, S.W. Crystal structure of an uncleaved α1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Lett.377, 150–154 (1995). ArticleCAS Google Scholar
Bode, W. & Huber, R. Ligand binding: proteinase-protein inhibitor interactions. Curr. Op. Struct. Biol.1, 45–52 (1991). ArticleCAS Google Scholar
Wilczynska, M., Fa, M., Ohlsson, P.-I. & Ny, T. The inhibition mechanism of serpins. Evidence that the mobile reactive centre loop is cleaved in the native protease-inhibitor complex. J. Biol. Chem.270, 29652–29655 (1995). ArticleCAS Google Scholar
Shore, J.D. et al. A fluorescent probe study of plasminogen activator inhibitor 1: Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J. Biol. Chem.270, 5395–5398 (1995). ArticleCAS Google Scholar
Engh, R., Huber, R., Bode, W. & Schulze, A.J. Divining the serpin inhibition mechanism: a suicide substrate ‘spring’? Trends in Biotech.13, 503–510 (1995). ArticleCAS Google Scholar
Olson, S.T. & Björk, I. Thromin, Structure and Function (eds. Berliner, LJ.) 159–217 (Plenum Press, 1992). Google Scholar
Gettins, P.G.W. et al. Transmission of conformational change from the heparin-binding site to the reactive centre of antithrombin. Biochemistry32, 8385–8389 (1993). ArticleCAS Google Scholar
van Boeckel, C.A.A., Grootenhuis, P.D.J. & Visser, A. A mechanism for heparin-induced potentiation of antithrombin III. Nature Struct. Biol.1, 423–425 (1994). ArticleCAS Google Scholar
Owen, M.C., Brennan, S.O., Lewis, J.H. & Carrell, R.W. Mutation of antitrypsin to antithrombin. α1-antitrypsin Pittsburgh (358 Met to Arg), a fatal bleeding disorder. N. Eng. J. Med.309, 694–698 (1983). ArticleCAS Google Scholar
Jordan, R.E., Nelson, R.M., Kilpatrick, J., Newgren, J.O., Esmon, P.C. & Fournel, M.A. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J. Biol. Chem.264, 10493–10500 (1989). CASPubMed Google Scholar
Eriksson, S., Carlson, J. & Velez, R. Risk of cirrhosis and primary liver cancer in alpha1-antitrypsin deficiency. N. Eng. J. Med.314, 736–739 (1986). ArticleCAS Google Scholar
Lomas, D.A., Evans, D.L., Finch, J.T. & Carrell, R.W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature357, 605–607 (1992). ArticleCAS Google Scholar
Lomas, D.A., Finch, J.T., Seyama, K., Nukiwa, T. & Carrell, R.W. α1-antitrypsin Siiyama (Ser53→Phe); further evidence for intracellular loop-sheet polymerisation. J. Biol. Chem.268, 15333–15335 (1993). CASPubMed Google Scholar
Lomas, D.A. et al. Alpha1-antitrypsin Mmalton (52Phe deleted) forms loop-sheet polymers in vivo: evidence for the C sheet mechanism of polymerisation. J. Biol. Chem.270, 16864–16870 (1995). ArticleCAS Google Scholar
Ma, J., Yee, A., Brewer jr., H.B. & Potter, H. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature372, 92–94 (1994). ArticleCAS Google Scholar
Fraser, P.E., Nguyen, J.T., McLachlan, D.R., Abraham, C.R. & Kirschner, D.A. α1-antichymotrypsin binding to Alzheimer A beta peptides is sequence specific and induces fibril disaggregation in vitro. J. Neurochem.61, 298–305 (1993). ArticleCAS Google Scholar
Janciauskiene, S., Eriksson, S. & Wright, H.T. A specific structural interaction of Alzheimer's peptide Aβ1-42 with α1-antichymotrypsin stimulates amyloid fibril formation. Nature Struct. Biol.3, 668–671 (1996). ArticleCAS Google Scholar
Hopkins, P.C.R., Carrell, R.W. & Stone, S.R. Effects of mutations in the hinge region of serpins. Biochemistry32, 7650–7657 (1993). ArticleCAS Google Scholar
Leslie, A.W.G. Recent changes to the MOSFLM package for processing film and image data. In Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography (Daresbury Laboratory, Warrington, UK, 1992). Google Scholar
Colloborative Computational Project Number 4. The CCP4 Suite : programs for protein crystallography. Acta Crystallogr. D50, (1994).
Navaza, J. AMoRe : an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994). Article Google Scholar
Brünger, A.T. XPLOR Version 3.1 Manual (Yale Univ., USA, 1993). Google Scholar
Abrahams, J.P. Likelihood-weighted real space restraints for refinement at low resolution. In Macromolecular Refinement, Proceedings of the CCP4 Study Weekend In the press (Daresbury Laboratory, Warrington, UK, 1996). Google Scholar
Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general purpose least-squares refinement program for macromolecular structure. Acta Crystallogr. A43, 489–501 (1992). Article Google Scholar
Kraulis, P.J. MOLSCRIPT: a program to produce detailed and schematic plots of protein structures. J. appl. Crystallogr.24, 946–950 (1991). Article Google Scholar
Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereo chemical quality of protein structures. J. Appl. Crystallogr.26, 283–291 (1994). Article Google Scholar