Inhibitory conformation of the reactive loop of α1-antitrypsin (original) (raw)

References

  1. Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177, 531–556 (1984).
    Article CAS Google Scholar
  2. Huber, R. & Carrell, R.W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28, 8951–8966 (1989).
    Article CAS Google Scholar
  3. Potempa, J., Korzus, E. & Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem. 269, 15957–15960 (1994).
    CAS PubMed Google Scholar
  4. Stein, P.E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99–102 (1990).
    Article CAS Google Scholar
  5. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).
    Article CAS Google Scholar
  6. Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3Å structure of dimeric antithrombin. Structure 2, 257–270 (1994).
    Article CAS Google Scholar
  7. Wei, A., Rubin, H., Cooperman, B.S. & Christianson, D.W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory loop. Nature Struct. Biol. 1, 251–258 (1994).
    Article CAS Google Scholar
  8. Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct. Biol. 1, 48–54 (1994).
    Article CAS Google Scholar
  9. Wright, H.T. & Scarsdale, J.N. Structural basis for serpin inhibitor activity. Proteins 22, 210–225 (1995).
    Article CAS Google Scholar
  10. Lomas, D.A., Evans, D.L., Stone, S.R., Chang, W.-S.W. & Carrell, R.W. The effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry 32, 500–508 (1993).
    Article CAS Google Scholar
  11. Mast, A.E., Enghild, J.J. & Salvesen, G. Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 31, 2720–2728 (1992).
    Article CAS Google Scholar
  12. Kwon, K.-S., Kim, J., Shin, H.S. & Yu, M.-H. Single amino acid substitutions of α1-antitrypsin that confer enhancement in thermal stability. J. Biol. Chem. 269, 9627–9631 (1994).
    CAS PubMed Google Scholar
  13. Sidhar, S.K., Lomas, D.A., Carrell, R.W. & Foreman, R.C. Mutations which impede loop/sheet polymerisation enhance the secretion of human α1-antitrypsin deficiency variants. J. Biol. Chem. 270, 8393–8396 (1995).
    Article CAS Google Scholar
  14. Song, H.K., Lee, K.N., Kwon, K.-S., Yu, M.-H. & Suh, S.W. Crystal structure of an uncleaved α1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Lett. 377, 150–154 (1995).
    Article CAS Google Scholar
  15. Bode, W. & Huber, R. Ligand binding: proteinase-protein inhibitor interactions. Curr. Op. Struct. Biol. 1, 45–52 (1991).
    Article CAS Google Scholar
  16. Wilczynska, M., Fa, M., Ohlsson, P.-I. & Ny, T. The inhibition mechanism of serpins. Evidence that the mobile reactive centre loop is cleaved in the native protease-inhibitor complex. J. Biol. Chem. 270, 29652–29655 (1995).
    Article CAS Google Scholar
  17. Shore, J.D. et al. A fluorescent probe study of plasminogen activator inhibitor 1: Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J. Biol. Chem. 270, 5395–5398 (1995).
    Article CAS Google Scholar
  18. Engh, R., Huber, R., Bode, W. & Schulze, A.J. Divining the serpin inhibition mechanism: a suicide substrate ‘spring’? Trends in Biotech. 13, 503–510 (1995).
    Article CAS Google Scholar
  19. Olson, S.T. & Björk, I. Thromin, Structure and Function (eds. Berliner, LJ.) 159–217 (Plenum Press, 1992).
    Google Scholar
  20. Gettins, P.G.W. et al. Transmission of conformational change from the heparin-binding site to the reactive centre of antithrombin. Biochemistry 32, 8385–8389 (1993).
    Article CAS Google Scholar
  21. van Boeckel, C.A.A., Grootenhuis, P.D.J. & Visser, A. A mechanism for heparin-induced potentiation of antithrombin III. Nature Struct. Biol. 1, 423–425 (1994).
    Article CAS Google Scholar
  22. Owen, M.C., Brennan, S.O., Lewis, J.H. & Carrell, R.W. Mutation of antitrypsin to antithrombin. α1-antitrypsin Pittsburgh (358 Met to Arg), a fatal bleeding disorder. N. Eng. J. Med. 309, 694–698 (1983).
    Article CAS Google Scholar
  23. Jordan, R.E., Nelson, R.M., Kilpatrick, J., Newgren, J.O., Esmon, P.C. & Fournel, M.A. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J. Biol. Chem. 264, 10493–10500 (1989).
    CAS PubMed Google Scholar
  24. Eriksson, S., Carlson, J. & Velez, R. Risk of cirrhosis and primary liver cancer in alpha1-antitrypsin deficiency. N. Eng. J. Med. 314, 736–739 (1986).
    Article CAS Google Scholar
  25. Lomas, D.A., Evans, D.L., Finch, J.T. & Carrell, R.W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607 (1992).
    Article CAS Google Scholar
  26. Lomas, D.A., Finch, J.T., Seyama, K., Nukiwa, T. & Carrell, R.W. α1-antitrypsin Siiyama (Ser53→Phe); further evidence for intracellular loop-sheet polymerisation. J. Biol. Chem. 268, 15333–15335 (1993).
    CAS PubMed Google Scholar
  27. Lomas, D.A. et al. Alpha1-antitrypsin Mmalton (52Phe deleted) forms loop-sheet polymers in vivo: evidence for the C sheet mechanism of polymerisation. J. Biol. Chem. 270, 16864–16870 (1995).
    Article CAS Google Scholar
  28. Ma, J., Yee, A., Brewer jr., H.B. & Potter, H. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372, 92–94 (1994).
    Article CAS Google Scholar
  29. Fraser, P.E., Nguyen, J.T., McLachlan, D.R., Abraham, C.R. & Kirschner, D.A. α1-antichymotrypsin binding to Alzheimer A beta peptides is sequence specific and induces fibril disaggregation in vitro. J. Neurochem. 61, 298–305 (1993).
    Article CAS Google Scholar
  30. Janciauskiene, S., Eriksson, S. & Wright, H.T. A specific structural interaction of Alzheimer's peptide Aβ1-42 with α1-antichymotrypsin stimulates amyloid fibril formation. Nature Struct. Biol. 3, 668–671 (1996).
    Article CAS Google Scholar
  31. Hopkins, P.C.R., Carrell, R.W. & Stone, S.R. Effects of mutations in the hinge region of serpins. Biochemistry 32, 7650–7657 (1993).
    Article CAS Google Scholar
  32. Leslie, A.W.G. Recent changes to the MOSFLM package for processing film and image data. In Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography (Daresbury Laboratory, Warrington, UK, 1992).
    Google Scholar
  33. Colloborative Computational Project Number 4. The CCP4 Suite : programs for protein crystallography. Acta Crystallogr. D50, (1994).
  34. Navaza, J. AMoRe : an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).
    Article Google Scholar
  35. Brünger, A.T. XPLOR Version 3.1 Manual (Yale Univ., USA, 1993).
    Google Scholar
  36. Abrahams, J.P. Likelihood-weighted real space restraints for refinement at low resolution. In Macromolecular Refinement, Proceedings of the CCP4 Study Weekend In the press (Daresbury Laboratory, Warrington, UK, 1996).
    Google Scholar
  37. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general purpose least-squares refinement program for macromolecular structure. Acta Crystallogr. A43, 489–501 (1992).
    Article Google Scholar
  38. Kraulis, P.J. MOLSCRIPT: a program to produce detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).
    Article Google Scholar
  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereo chemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1994).
    Article Google Scholar

Download references