Critical elements in proteasome assembly (original) (raw)

References

  1. Goldberg, A.L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 9–23 (1992).
    Article CAS PubMed Google Scholar
  2. Tanaka, K., Tamura, T., Yoshimura, T. & Ichihara, A. Proteasomes: protein and gene structure. The New Biologist 4, 173–187 (1992).
    CAS PubMed Google Scholar
  3. Rivett, A.J. Proteasomes: multicatalytic proteinase complexes. Biochem. J. 291, 1–10 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  4. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. A. Rev. Biochem. 61, 761–807 (1992).
    Article CAS Google Scholar
  5. Rechsteiner, M., Hoffman, L. & Dubiel, W. The multicatalytic and 26S proteases. J. biol. Chem. 268, 6065–6068 (1993).
    CAS PubMed Google Scholar
  6. Goldberg, A.L. & Rock, K.L. Proteolysis, proteasomes and antigen presentation. Nature 357, 375–379 (1992).
    Article CAS PubMed Google Scholar
  7. Monaco, J.J. A molecular model of MHC class-I-restricted antigen processing. Immunol. Today 13, 173–179 (1992).
    Article CAS PubMed Google Scholar
  8. Trowsdale, J. Genomic structure and function in the MHC. Trends Genet. 9, 117–122 (1993).
    Article CAS PubMed Google Scholar
  9. Schauer, T. et al. Proteasomes from Dictyostelium discoideum: characterization of structure and function. J. struct. Biol. 111, 135–147 (1993).
    Article CAS PubMed Google Scholar
  10. Hegerl, R., Pfeifer, G., Puehler, G., Dahlmann, B. & Baumeister, W. The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Letts. 283, 117–121 (1991).
    Article CAS Google Scholar
  11. Puehler, G. et al. Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J. 11, 1607–1616 (1992).
    Article CAS Google Scholar
  12. Kopp, F., Dahlmann, B. & Hendil, K.B. Evidence indicating that the human proteasome is a complex dimer. J. molec. Biol. 229, 14–19 (1993).
    Article CAS PubMed Google Scholar
  13. Dahlmann, B. et al. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FFBS Letts. 251, 125–131 (1989).
    Article CAS Google Scholar
  14. Zwickl, P., Lottspeich, F., Dahlmann, B. & Baumeister, W. Cloning and sequencing of the gene encoding the large (α-) subunit of the proteasome from Thermoplasma acidophilum. FEBS Letts. 278, 217–221 (1991).
    Article CAS Google Scholar
  15. Zwickl, P. et al. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964–972 (1992).
    Article CAS PubMed Google Scholar
  16. Puehler, G., Pitzer, F., Zwickl, P. & Baumeister, W. Proteasomes: multisubunit proteinases common to Thermoplasma and Eukaryotes. System. appl. Microbiol. 16, 734–741 (1994).
    Article CAS Google Scholar
  17. Grziwa, A., Baumeister, W., Dahlmann, B. & Kopp, F. Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Letts 290, 186–190 (1991).
    Article CAS Google Scholar
  18. Zwickl, P., Lottspeich, F. & Baumeister, W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Letts 312, 157–160 (1992).
    Article CAS Google Scholar
  19. Frueh, K. et al. Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J. biol. Chem. 267, 22131–22140 (1992).
    CAS Google Scholar
  20. Glynne, R. et al. The major histocompatibility complex-encoded proteasome component LMP7: alternative first axons and posttranslational processing. Eur. J. Immunol. 23, 860–866 (1993).
    Article CAS PubMed Google Scholar
  21. Frentzel, S. et al. The major-histocompatibility-complex-encoded β-type proteasome subunits LMP2 and LMP7. Eur. J. Biochem. 216, 119–126 (1993).
    Article CAS PubMed Google Scholar
  22. Frentzel, S., Pesold-Hurt, B., Seelig, A. & Kloetzel, P.-M. 20S proteasomes are assembled via distinct precursor complexes. J. molec. Biol. 236, 975–981 (1994).
    Article CAS PubMed Google Scholar
  23. Martinez, C.K. & Monaco, J.J. Post-translational processing of a major histocompatibility complex-encoded proteasome subunit, LMP-2. Molec. Immunol. 30, 1177–1183 (1993).
    Article CAS Google Scholar
  24. Maurizi, M.R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178–201 (1992).
    Article CAS PubMed Google Scholar
  25. Gottesman, S. & Maurizi, M.R. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56, 592–621 (1992).
    CAS PubMed PubMed Central Google Scholar
  26. Baker, D., Shiau, A.K. & Agard, D.A. The role of pro regions in protein folding. Curr. Opin. Cell Biol. 5, 966–970 (1993).
    Article CAS PubMed Google Scholar
  27. Shinde, U. & Inouye, M. Intramolecular chaperones and protein folding. Trends biochem. Sci. 18, 442–446 (1993).
    Article CAS PubMed Google Scholar
  28. Seelig, A., Multhaup, G., Pesold-Hurt, B., Beyreuther, K. & Kloetzel, P.-M. Drosophila proteasomes Dm25 subunit substitutes the mouse MC3 subunit in hybrid proteasomes. J. biol. Chem. 268, 25561–25567 (1993).
    CAS PubMed Google Scholar
  29. Zwickl, P. et al. Electron microscopy and image analysis reveal common principles of organization in two large protein complexes: GroEL-type proteins and proteasomes. J. struct. Biol. 103, 197–203 (1990).
    Article CAS PubMed Google Scholar
  30. Horovitz, A., Bochkareva, E.S. & Girshovich, A.S. The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly. J. biol. Chem. 268, 9957–9959 (1993).
    CAS PubMed Google Scholar
  31. Horovitz, A., Bochkareva, E.S., Kovalenko, O. & Girshovich, A.S. Mutation Ala2Ser destabilizes intersubunit interactions in the molecular chaperone GroEL. J. molec. Biol. 231, 58–64 (1993).
    Article CAS PubMed Google Scholar
  32. Taguchi, H., Makino, Y. & Yoshida, M. Monomeric chaperonin-60 and its 50-kda fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J. biol. Chem. 269, 8529–8534 (1994).
    CAS PubMed Google Scholar
  33. Thornton, J.M. & Sibanda, B.L. Amino and carboxy-terminal regions in globular proteins. J. molec. Biol. 167, 443–460 (1983).
    Article CAS PubMed Google Scholar
  34. Grziwa, A., Maack, S., Puehler, G., Wiegand, G., Baumeister, W. & Jaenicke, R. Dissociation and reconstitution of the Thermoplasma proteasome. Eur. J. Biochem. 223, 1061–1067 (1994).
    Article CAS PubMed Google Scholar
  35. Akiyama, K. et al. cDNA cloning and interferon γ down-regulation of proteasomal subunits X and Y. Science 265, 1231–1234 (1994).
    Article CAS PubMed Google Scholar
  36. Belich, M.P., Glynne, R.J., Senger, G., Sheer, D. & Trowsdale, J. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr. Biol. 4, 769–776 (1994).
    Article CAS PubMed Google Scholar
  37. Clackson, T., Guessow, D. & Jones, P.T. General application of PCR to gene cloning and manipulation. in PCR, A practical approach (eds McPherson, M.J. et al.) 187–214 (Oxford University Press, Oxford, (1991).
    Google Scholar
  38. Lundberg, K.S. et al. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108, 1–6 (1991).
    Article CAS PubMed Google Scholar
  39. Tabor, S. & Richardson, C.C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. natn. Acad. Sci. U.S.A. 82, 1074–1078 (1985).
    Article CAS Google Scholar
  40. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
    Article CAS PubMed Google Scholar

Download references