Critical elements in proteasome assembly (original) (raw)
References
Goldberg, A.L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem.203, 9–23 (1992). ArticleCASPubMed Google Scholar
Tanaka, K., Tamura, T., Yoshimura, T. & Ichihara, A. Proteasomes: protein and gene structure. The New Biologist4, 173–187 (1992). CASPubMed Google Scholar
Schauer, T. et al. Proteasomes from Dictyostelium discoideum: characterization of structure and function. J. struct. Biol.111, 135–147 (1993). ArticleCASPubMed Google Scholar
Hegerl, R., Pfeifer, G., Puehler, G., Dahlmann, B. & Baumeister, W. The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Letts.283, 117–121 (1991). ArticleCAS Google Scholar
Puehler, G. et al. Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J.11, 1607–1616 (1992). ArticleCAS Google Scholar
Kopp, F., Dahlmann, B. & Hendil, K.B. Evidence indicating that the human proteasome is a complex dimer. J. molec. Biol.229, 14–19 (1993). ArticleCASPubMed Google Scholar
Dahlmann, B. et al. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FFBS Letts.251, 125–131 (1989). ArticleCAS Google Scholar
Zwickl, P., Lottspeich, F., Dahlmann, B. & Baumeister, W. Cloning and sequencing of the gene encoding the large (α-) subunit of the proteasome from Thermoplasma acidophilum. FEBS Letts.278, 217–221 (1991). ArticleCAS Google Scholar
Zwickl, P. et al. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry31, 964–972 (1992). ArticleCASPubMed Google Scholar
Puehler, G., Pitzer, F., Zwickl, P. & Baumeister, W. Proteasomes: multisubunit proteinases common to Thermoplasma and Eukaryotes. System. appl. Microbiol.16, 734–741 (1994). ArticleCAS Google Scholar
Grziwa, A., Baumeister, W., Dahlmann, B. & Kopp, F. Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Letts290, 186–190 (1991). ArticleCAS Google Scholar
Zwickl, P., Lottspeich, F. & Baumeister, W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Letts312, 157–160 (1992). ArticleCAS Google Scholar
Frueh, K. et al. Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J. biol. Chem.267, 22131–22140 (1992). CAS Google Scholar
Glynne, R. et al. The major histocompatibility complex-encoded proteasome component LMP7: alternative first axons and posttranslational processing. Eur. J. Immunol.23, 860–866 (1993). ArticleCASPubMed Google Scholar
Frentzel, S. et al. The major-histocompatibility-complex-encoded β-type proteasome subunits LMP2 and LMP7. Eur. J. Biochem.216, 119–126 (1993). ArticleCASPubMed Google Scholar
Frentzel, S., Pesold-Hurt, B., Seelig, A. & Kloetzel, P.-M. 20S proteasomes are assembled via distinct precursor complexes. J. molec. Biol.236, 975–981 (1994). ArticleCASPubMed Google Scholar
Martinez, C.K. & Monaco, J.J. Post-translational processing of a major histocompatibility complex-encoded proteasome subunit, LMP-2. Molec. Immunol.30, 1177–1183 (1993). ArticleCAS Google Scholar
Maurizi, M.R. Proteases and protein degradation in Escherichia coli. Experientia48, 178–201 (1992). ArticleCASPubMed Google Scholar
Gottesman, S. & Maurizi, M.R. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev.56, 592–621 (1992). CASPubMedPubMed Central Google Scholar
Baker, D., Shiau, A.K. & Agard, D.A. The role of pro regions in protein folding. Curr. Opin. Cell Biol.5, 966–970 (1993). ArticleCASPubMed Google Scholar
Shinde, U. & Inouye, M. Intramolecular chaperones and protein folding. Trends biochem. Sci.18, 442–446 (1993). ArticleCASPubMed Google Scholar
Seelig, A., Multhaup, G., Pesold-Hurt, B., Beyreuther, K. & Kloetzel, P.-M. Drosophila proteasomes Dm25 subunit substitutes the mouse MC3 subunit in hybrid proteasomes. J. biol. Chem.268, 25561–25567 (1993). CASPubMed Google Scholar
Zwickl, P. et al. Electron microscopy and image analysis reveal common principles of organization in two large protein complexes: GroEL-type proteins and proteasomes. J. struct. Biol.103, 197–203 (1990). ArticleCASPubMed Google Scholar
Horovitz, A., Bochkareva, E.S. & Girshovich, A.S. The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly. J. biol. Chem.268, 9957–9959 (1993). CASPubMed Google Scholar
Horovitz, A., Bochkareva, E.S., Kovalenko, O. & Girshovich, A.S. Mutation Ala2Ser destabilizes intersubunit interactions in the molecular chaperone GroEL. J. molec. Biol.231, 58–64 (1993). ArticleCASPubMed Google Scholar
Taguchi, H., Makino, Y. & Yoshida, M. Monomeric chaperonin-60 and its 50-kda fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J. biol. Chem.269, 8529–8534 (1994). CASPubMed Google Scholar
Thornton, J.M. & Sibanda, B.L. Amino and carboxy-terminal regions in globular proteins. J. molec. Biol.167, 443–460 (1983). ArticleCASPubMed Google Scholar
Grziwa, A., Maack, S., Puehler, G., Wiegand, G., Baumeister, W. & Jaenicke, R. Dissociation and reconstitution of the Thermoplasma proteasome. Eur. J. Biochem.223, 1061–1067 (1994). ArticleCASPubMed Google Scholar
Akiyama, K. et al. cDNA cloning and interferon γ down-regulation of proteasomal subunits X and Y. Science265, 1231–1234 (1994). ArticleCASPubMed Google Scholar
Belich, M.P., Glynne, R.J., Senger, G., Sheer, D. & Trowsdale, J. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr. Biol.4, 769–776 (1994). ArticleCASPubMed Google Scholar
Clackson, T., Guessow, D. & Jones, P.T. General application of PCR to gene cloning and manipulation. in PCR, A practical approach (eds McPherson, M.J. et al.) 187–214 (Oxford University Press, Oxford, (1991). Google Scholar
Lundberg, K.S. et al. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene108, 1–6 (1991). ArticleCASPubMed Google Scholar
Tabor, S. & Richardson, C.C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. natn. Acad. Sci. U.S.A.82, 1074–1078 (1985). ArticleCAS Google Scholar
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685 (1970). ArticleCASPubMed Google Scholar