Regulation of neuronal SNARE assembly by the membrane (original) (raw)
References
Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell75, 409–418 (1993). Article Google Scholar
Rothman, J.E. Mechanisms of intracellular protein transport. Nature372, 55–63 (1994). ArticleCAS Google Scholar
Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem.68, 863–911 (1999). ArticleCAS Google Scholar
Lin, R.C. & Scheller, R.H. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol.16, 19–49 (2000). ArticleCAS Google Scholar
Brunger, A.T. Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion. Curr. Opin. Struct. Biol.11, 163–173 (2001). ArticleCAS Google Scholar
Rizo, J. & Sudhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci.3, 641–653 (2002). ArticleCAS Google Scholar
Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol.5, 765–769 (1998). ArticleCAS Google Scholar
Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature395, 347–353 (1998). ArticleCAS Google Scholar
Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell90, 523–535 (1997). ArticleCAS Google Scholar
Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron19, 1087–1094 (1997). ArticleCAS Google Scholar
Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brunger, A.T. Structural changes are associated with soluble _N_-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem.272, 28036–28041 (1997). ArticleCAS Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998). ArticleCAS Google Scholar
Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell94, 841–849 (1998). ArticleCAS Google Scholar
Nicholson, K.L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol.5, 793–802 (1998). ArticleCAS Google Scholar
Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell97, 165–174 (1999). ArticleCAS Google Scholar
Südhof, T.C. Synaptotagmins: why so many? J. Biol. Chem.277, 7629–7632 (2002). Article Google Scholar
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49 (2001). ArticleCAS Google Scholar
Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Mol. Cell. Biol.3, 1–11 (2002). Article Google Scholar
Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature375, 594–599 (1995). ArticleCAS Google Scholar
Gerona, R.R., Larsen, E.C., Kowalchyk, J.A. & Martin, T.F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem.275, 6328–6336 (2000). ArticleCAS Google Scholar
Littleton, J.T., Stern, M., Perin, M. & Bellen, H.J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. USA91, 10888–10892 (1994). ArticleCAS Google Scholar
DiAntonio, A. & Schwarz, T.L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron12, 909–920 (1994). ArticleCAS Google Scholar
Kee, Y. & Scheller, R.H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci.16, 1975–1981 (1996). ArticleCAS Google Scholar
Littleton, J.T., Serano, T.L., Rubin, G.M., Ganetzky, B. & Chapman, E.R. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature400, 757–760 (1999). ArticleCAS Google Scholar
Littleton, J.T. et al. Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci.21, 1421–1433 (2001). ArticleCAS Google Scholar
Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron24, 363–376 (1999). ArticleCAS Google Scholar
Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science256, 1021–1025 (1992). ArticleCAS Google Scholar
Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry37, 12395–12403 (1998). ArticleCAS Google Scholar
Bai, J. Earles, C.A. Lewis, J.L. & Chapman, E.R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem.275, 25427–25435 (2000). ArticleCAS Google Scholar
Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature415, 646–650 (2002). ArticleCAS Google Scholar
Quetglas, S., Leveque, C., Miquelis, R., Sato, K. & Seagar, M. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc. Natl. Acad. Sci. USA97, 9695–9700 (2000). ArticleCAS Google Scholar
Hubbell, W.L., Gross, A., Langen, R. & Lietzow, M.A. Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol.8, 649–656 (1998). ArticleCAS Google Scholar
Rabenstein, M.D. & Shin, Y.-K. A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry34, 13390–13397 (1995). ArticleCAS Google Scholar
Thorgeirsson, T.E., Russell, C.J., King, D.S. & Shin, Y.-K. Direct determination of the membrane affinities of individual amino acids. Biochemistry35, 1803–1809 (1996). ArticleCAS Google Scholar
Wimley, W.C. & White, S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol.3, 842–848 (1996). ArticleCAS Google Scholar
Abrams, F.S. & London, E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry31, 5312–5322 (1992). ArticleCAS Google Scholar
Chattopadhyay, A. & London, E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry26, 39–45 (1987). ArticleCAS Google Scholar
Columbus, L. & Hubbell, W.L. A new spin on protein dynamics. Trends Biochem. Sci.27, 288–295 (2002). ArticleCAS Google Scholar
Altenbach, C., Greenhalgh, D.A., Khorana, H.G. & Hubbell, W.L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA91, 1667–1671 (1994). ArticleCAS Google Scholar
Altenbach, C., Marti, T., Khorana, H.G. & Hubbell, W.L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science248, 1088–1092 (1990). ArticleCAS Google Scholar
Hua, S.-Y. & Charlton, M.P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci.2, 1078–1083 (1999). ArticleCAS Google Scholar
Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol.158, 929–940 (2002). ArticleCAS Google Scholar
Mahal, L.K., Sequeira, S.M., Gureasko, J.M. & Sollner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol.158, 273–282 (2002). ArticleCAS Google Scholar
Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol.6, 117–123 (1999). ArticleCAS Google Scholar
Weimbs, T., Mostov, K., Low, S.H. & Hofmann, K. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol.8, 260–262 (1998). ArticleCAS Google Scholar
Quetglas, S. et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J.21, 3970–3979 (2002). ArticleCAS Google Scholar
Lang, T., Margittai, M., Holzler, H. & Jahn, R. SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. J Cell Biol.158, 751–760 (2002). ArticleCAS Google Scholar
Margittai, M., Otto, H. & Jahn, R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett.446, 40–44 (1999). ArticleCAS Google Scholar
Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem.275, 17481–17487 (2000). ArticleCAS Google Scholar
Fleming, K.G. & Engelman, D.M. Computation and mutagenesis suggest a right-handed structure for the synaptobrevin transmembrane dimer. Proteins45, 313–317 (2001). ArticleCAS Google Scholar
Rabenstein, M.D. & Shin, Y.-K. Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA92, 8239–8243 (1995). ArticleCAS Google Scholar
Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell99, 713–722 (1999). ArticleCAS Google Scholar
Chen, Y.A., Scales, S.J. & Scheller, R.H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron30, 161–170 (2001). ArticleCAS Google Scholar
Kweon, D.-H., Kim, C.S. & Shin Y.-K. Insertion of the membrane proximal region of the neuronal SNARE coiled coil into the membrane. J. Biol. Chem.278, 12367–12373 (2003). ArticleCAS Google Scholar
Jahn, R. & Südhof, T.C. Synaptic vesicles and exocytosis. Annu. Rev. Neurosci.17, 219–246 (1994). ArticleCAS Google Scholar
Macosko, J.C., Kim, C.-H. & Shin, Y.-K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol.267, 1139–1148 (1997). ArticleCAS Google Scholar