Regulation of neuronal SNARE assembly by the membrane (original) (raw)

References

  1. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).
    Article Google Scholar
  2. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).
    Article CAS Google Scholar
  3. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).
    Article CAS Google Scholar
  4. Lin, R.C. & Scheller, R.H. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol. 16, 19–49 (2000).
    Article CAS Google Scholar
  5. Brunger, A.T. Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion. Curr. Opin. Struct. Biol. 11, 163–173 (2001).
    Article CAS Google Scholar
  6. Rizo, J. & Sudhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 3, 641–653 (2002).
    Article CAS Google Scholar
  7. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).
    Article CAS Google Scholar
  8. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).
    Article CAS Google Scholar
  9. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).
    Article CAS Google Scholar
  10. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).
    Article CAS Google Scholar
  11. Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brunger, A.T. Structural changes are associated with soluble _N_-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272, 28036–28041 (1997).
    Article CAS Google Scholar
  12. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).
    Article CAS Google Scholar
  13. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).
    Article CAS Google Scholar
  14. Nicholson, K.L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol. 5, 793–802 (1998).
    Article CAS Google Scholar
  15. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).
    Article CAS Google Scholar
  16. Südhof, T.C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).
    Article Google Scholar
  17. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).
    Article CAS Google Scholar
  18. Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Mol. Cell. Biol. 3, 1–11 (2002).
    Article Google Scholar
  19. Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).
    Article CAS Google Scholar
  20. Gerona, R.R., Larsen, E.C., Kowalchyk, J.A. & Martin, T.F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).
    Article CAS Google Scholar
  21. Littleton, J.T., Stern, M., Perin, M. & Bellen, H.J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. USA 91, 10888–10892 (1994).
    Article CAS Google Scholar
  22. DiAntonio, A. & Schwarz, T.L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 12, 909–920 (1994).
    Article CAS Google Scholar
  23. Kee, Y. & Scheller, R.H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).
    Article CAS Google Scholar
  24. Littleton, J.T., Serano, T.L., Rubin, G.M., Ganetzky, B. & Chapman, E.R. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature 400, 757–760 (1999).
    Article CAS Google Scholar
  25. Littleton, J.T. et al. Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci. 21, 1421–1433 (2001).
    Article CAS Google Scholar
  26. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).
    Article CAS Google Scholar
  27. Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).
    Article CAS Google Scholar
  28. Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).
    Article CAS Google Scholar
  29. Bai, J. Earles, C.A. Lewis, J.L. & Chapman, E.R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem. 275, 25427–25435 (2000).
    Article CAS Google Scholar
  30. Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650 (2002).
    Article CAS Google Scholar
  31. Quetglas, S., Leveque, C., Miquelis, R., Sato, K. & Seagar, M. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc. Natl. Acad. Sci. USA 97, 9695–9700 (2000).
    Article CAS Google Scholar
  32. Hubbell, W.L., Gross, A., Langen, R. & Lietzow, M.A. Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8, 649–656 (1998).
    Article CAS Google Scholar
  33. Rabenstein, M.D. & Shin, Y.-K. A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry 34, 13390–13397 (1995).
    Article CAS Google Scholar
  34. Thorgeirsson, T.E., Russell, C.J., King, D.S. & Shin, Y.-K. Direct determination of the membrane affinities of individual amino acids. Biochemistry 35, 1803–1809 (1996).
    Article CAS Google Scholar
  35. Wimley, W.C. & White, S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848 (1996).
    Article CAS Google Scholar
  36. Abrams, F.S. & London, E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry 31, 5312–5322 (1992).
    Article CAS Google Scholar
  37. Chattopadhyay, A. & London, E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26, 39–45 (1987).
    Article CAS Google Scholar
  38. Columbus, L. & Hubbell, W.L. A new spin on protein dynamics. Trends Biochem. Sci. 27, 288–295 (2002).
    Article CAS Google Scholar
  39. Altenbach, C., Greenhalgh, D.A., Khorana, H.G. & Hubbell, W.L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 91, 1667–1671 (1994).
    Article CAS Google Scholar
  40. Altenbach, C., Marti, T., Khorana, H.G. & Hubbell, W.L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092 (1990).
    Article CAS Google Scholar
  41. Hua, S.-Y. & Charlton, M.P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2, 1078–1083 (1999).
    Article CAS Google Scholar
  42. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).
    Article CAS Google Scholar
  43. Mahal, L.K., Sequeira, S.M., Gureasko, J.M. & Sollner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol. 158, 273–282 (2002).
    Article CAS Google Scholar
  44. Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol. 6, 117–123 (1999).
    Article CAS Google Scholar
  45. Weimbs, T., Mostov, K., Low, S.H. & Hofmann, K. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260–262 (1998).
    Article CAS Google Scholar
  46. Quetglas, S. et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J. 21, 3970–3979 (2002).
    Article CAS Google Scholar
  47. Lang, T., Margittai, M., Holzler, H. & Jahn, R. SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. J Cell Biol. 158, 751–760 (2002).
    Article CAS Google Scholar
  48. Margittai, M., Otto, H. & Jahn, R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett. 446, 40–44 (1999).
    Article CAS Google Scholar
  49. Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem. 275, 17481–17487 (2000).
    Article CAS Google Scholar
  50. Fleming, K.G. & Engelman, D.M. Computation and mutagenesis suggest a right-handed structure for the synaptobrevin transmembrane dimer. Proteins 45, 313–317 (2001).
    Article CAS Google Scholar
  51. Rabenstein, M.D. & Shin, Y.-K. Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92, 8239–8243 (1995).
    Article CAS Google Scholar
  52. Bowen, M.E., Engelman, D.M. & Brunger A.T. Mutational analysis of synaptobrevin transmembrane domain oligomerization. Biochemistry 41, 15861–15866.
  53. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).
    Article CAS Google Scholar
  54. Chen, Y.A., Scales, S.J. & Scheller, R.H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30, 161–170 (2001).
    Article CAS Google Scholar
  55. Kweon, D.-H., Kim, C.S. & Shin Y.-K. Insertion of the membrane proximal region of the neuronal SNARE coiled coil into the membrane. J. Biol. Chem. 278, 12367–12373 (2003).
    Article CAS Google Scholar
  56. Jahn, R. & Südhof, T.C. Synaptic vesicles and exocytosis. Annu. Rev. Neurosci. 17, 219–246 (1994).
    Article CAS Google Scholar
  57. Macosko, J.C., Kim, C.-H. & Shin, Y.-K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol. 267, 1139–1148 (1997).
    Article CAS Google Scholar

Download references