Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system (original) (raw)

References

  1. Sandkvist, M. Type II secretion and pathogenesis. Infect. Immun. 69, 3523–3535 (2001).
    Article CAS Google Scholar
  2. Tauschek, M., Gorrell, R.J., Strugnell, R.A. & Robins-Browne, R.M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 7066–7071 (2002).
    Article CAS Google Scholar
  3. Turner, S.M., Scott-Tucker, A., Cooper, L.M. & Henderson, I.R. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 263, 10–20 (2006).
    Article CAS Google Scholar
  4. Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol. 179, 6994–7003 (1997).
    Article CAS Google Scholar
  5. Filloux, A. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694, 163–179 (2004).
    Article CAS Google Scholar
  6. Johnson, T.L., Abendroth, J., Hol, W.G. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett. 255, 175–186 (2006).
    Article CAS Google Scholar
  7. Hobbs, M. & Mattick, J.S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10, 233–243 (1993).
    Article CAS Google Scholar
  8. Peabody, C.R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003).
    Article CAS Google Scholar
  9. Mattick, J.S. & Alm, R.A. Response from Mattick and Alm: common architecture of type 4 fimbriae and complexes involved in macromolecular traffic. Trends Microbiol. 3, 411–413 (1995).
    Article Google Scholar
  10. Filloux, A., Michel, G. & Bally, M. GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev. 22, 177–198 (1998).
    Article CAS Google Scholar
  11. Nunn, D.N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl. Acad. Sci. USA 88, 3281–3285 (1991).
    Article CAS Google Scholar
  12. Nunn, D.N. & Lory, S. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V, and -W. J. Bacteriol. 175, 4375–4382 (1993).
    Article CAS Google Scholar
  13. Parge, H.E. et al. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378, 32–38 (1995).
    Article CAS Google Scholar
  14. Sauvonnet, N., Vignon, G., Pugsley, A.P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 19, 2221–2228 (2000).
    Article CAS Google Scholar
  15. Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol. 27, 31–40 (1998).
    Article CAS Google Scholar
  16. Wolfgang, M., van Putten, J.P., Hayes, S.F. & Koomey, M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol. Microbiol. 31, 1345–1357 (1999).
    Article CAS Google Scholar
  17. Toma, C., Kuroki, H., Nakasone, N., Ehara, M. & Iwanaga, M. Minor pilin subunits are conserved in Vibrio cholerae type IV pili. FEMS Immunol. Med. Microbiol. 33, 35–40 (2002).
    Article CAS Google Scholar
  18. Winther-Larsen, H.C. et al. A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol. Microbiol. 56, 903–917 (2005).
    Article CAS Google Scholar
  19. Lu, H.M., Motley, S.T. & Lory, S. Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol. Microbiol. 25, 247–259 (1997).
    Article CAS Google Scholar
  20. Douet, V., Loiseau, L., Barras, F. & Py, B. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res. Microbiol. 155, 71–75 (2004).
    Article CAS Google Scholar
  21. Kuo, W.W., Kuo, H.W., Cheng, C.C., Lai, H.L. & Chen, L.Y. Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J. Biomed. Sci. 12, 587–599 (2005).
    Article CAS Google Scholar
  22. Hazes, B., Sastry, P.A., Hayakawa, K., Read, R.J. & Irvin, R.T. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J. Mol. Biol. 299, 1005–1017 (2000).
    Article CAS Google Scholar
  23. Keizer, D.W. et al. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J. Biol. Chem. 276, 24186–24193 (2001).
    Article CAS Google Scholar
  24. Craig, L., Pique, M.E. & Tainer, J.A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).
    Article CAS Google Scholar
  25. Köhler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol. 54, 647–664 (2004).
    Article Google Scholar
  26. Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).
    Article CAS Google Scholar
  27. Robien, M.A., Krumm, B.E., Sandkvist, M. & Hol, W.G. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333, 657–674 (2003).
    Article CAS Google Scholar
  28. Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W.G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344, 619–633 (2004).
    Article CAS Google Scholar
  29. Abendroth, J., Rice, A.E., McLuskey, K., Bagdasarian, M. & Hol, W.G. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J. Mol. Biol. 338, 585–596 (2004).
    Article CAS Google Scholar
  30. Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W.G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845–855 (2005).
    Article CAS Google Scholar
  31. Korotkov, K.V., Krumm, B., Bagdasarian, M. & Hol, W.G. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J. Mol. Biol. 363, 311–321 (2006).
    Article CAS Google Scholar
  32. Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. Structure of the minor pseudopilin EpsH from the type 2 Secretion system of Vibrio cholerae. J. Mol. Biol. 375, 471–486 (2008).
    Article CAS Google Scholar
  33. Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J. Mol. Biol. 375, 471–486 (2008).
    Article CAS Google Scholar
  34. Pugsley, A.P., Bayan, N. & Sauvonnet, N. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J. Bacteriol. 183, 1312–1319 (2001).
    Article CAS Google Scholar
  35. Durand, E. et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem. 280, 31378–31389 (2005).
    Article CAS Google Scholar
  36. Reyss, I. & Pugsley, A.P. Five additional genes in the pulC-O operon of the Gram-negative bacterium Klebsiella oxytoca UNF5023 which are required for pullulanase secretion. Mol. Gen. Genet. 222, 176–184 (1990).
    Article CAS Google Scholar
  37. Helaine, S., Dyer, D.H., Nassif, X., Pelicic, V. & Forest, K.T. 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili. Proc. Natl. Acad. Sci. USA 104, 15888–15893 (2007).
    Article CAS Google Scholar
  38. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 (1996).
    Article CAS Google Scholar
  39. Hansen, J.K. & Forest, K.T. Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J. Mol. Microbiol. Biotechnol. 11, 192–207 (2006).
    Article CAS Google Scholar
  40. Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).
    Article CAS Google Scholar
  41. Jones, S. & Thornton, J.M. Protein-protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol. 63, 31–65 (1995).
    Article CAS Google Scholar
  42. Nunn, D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol. 9, 402–408 (1999).
    Article CAS Google Scholar
  43. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).
    Article CAS Google Scholar
  44. Alm, R.A. & Mattick, J.S. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192, 89–98 (1997).
    Article CAS Google Scholar
  45. Hu, N.T. et al. XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem. J. 365, 205–211 (2002).
    Article CAS Google Scholar
  46. Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003).
    Article CAS Google Scholar
  47. van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).
    Article CAS Google Scholar
  48. Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170–179 (2003).
    Article CAS Google Scholar
  49. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).
    Article CAS Google Scholar
  50. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).
    Article CAS Google Scholar
  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article Google Scholar
  52. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
    Article CAS Google Scholar
  53. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
    Article CAS Google Scholar
  54. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).
    Article Google Scholar

Download references