Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system (original) (raw)
References
Sandkvist, M. Type II secretion and pathogenesis. Infect. Immun.69, 3523–3535 (2001). ArticleCAS Google Scholar
Tauschek, M., Gorrell, R.J., Strugnell, R.A. & Robins-Browne, R.M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl. Acad. Sci. USA99, 7066–7071 (2002). ArticleCAS Google Scholar
Turner, S.M., Scott-Tucker, A., Cooper, L.M. & Henderson, I.R. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol. Lett.263, 10–20 (2006). ArticleCAS Google Scholar
Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol.179, 6994–7003 (1997). ArticleCAS Google Scholar
Filloux, A. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta1694, 163–179 (2004). ArticleCAS Google Scholar
Johnson, T.L., Abendroth, J., Hol, W.G. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett.255, 175–186 (2006). ArticleCAS Google Scholar
Hobbs, M. & Mattick, J.S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol.10, 233–243 (1993). ArticleCAS Google Scholar
Peabody, C.R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology149, 3051–3072 (2003). ArticleCAS Google Scholar
Mattick, J.S. & Alm, R.A. Response from Mattick and Alm: common architecture of type 4 fimbriae and complexes involved in macromolecular traffic. Trends Microbiol.3, 411–413 (1995). Article Google Scholar
Filloux, A., Michel, G. & Bally, M. GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev.22, 177–198 (1998). ArticleCAS Google Scholar
Nunn, D.N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl. Acad. Sci. USA88, 3281–3285 (1991). ArticleCAS Google Scholar
Nunn, D.N. & Lory, S. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V, and -W. J. Bacteriol.175, 4375–4382 (1993). ArticleCAS Google Scholar
Parge, H.E. et al. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature378, 32–38 (1995). ArticleCAS Google Scholar
Sauvonnet, N., Vignon, G., Pugsley, A.P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J.19, 2221–2228 (2000). ArticleCAS Google Scholar
Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol.27, 31–40 (1998). ArticleCAS Google Scholar
Wolfgang, M., van Putten, J.P., Hayes, S.F. & Koomey, M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol. Microbiol.31, 1345–1357 (1999). ArticleCAS Google Scholar
Toma, C., Kuroki, H., Nakasone, N., Ehara, M. & Iwanaga, M. Minor pilin subunits are conserved in Vibrio cholerae type IV pili. FEMS Immunol. Med. Microbiol.33, 35–40 (2002). ArticleCAS Google Scholar
Winther-Larsen, H.C. et al. A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol. Microbiol.56, 903–917 (2005). ArticleCAS Google Scholar
Lu, H.M., Motley, S.T. & Lory, S. Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol. Microbiol.25, 247–259 (1997). ArticleCAS Google Scholar
Douet, V., Loiseau, L., Barras, F. & Py, B. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res. Microbiol.155, 71–75 (2004). ArticleCAS Google Scholar
Kuo, W.W., Kuo, H.W., Cheng, C.C., Lai, H.L. & Chen, L.Y. Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J. Biomed. Sci.12, 587–599 (2005). ArticleCAS Google Scholar
Hazes, B., Sastry, P.A., Hayakawa, K., Read, R.J. & Irvin, R.T. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J. Mol. Biol.299, 1005–1017 (2000). ArticleCAS Google Scholar
Keizer, D.W. et al. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J. Biol. Chem.276, 24186–24193 (2001). ArticleCAS Google Scholar
Craig, L., Pique, M.E. & Tainer, J.A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol.2, 363–378 (2004). ArticleCAS Google Scholar
Köhler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol.54, 647–664 (2004). Article Google Scholar
Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell23, 651–662 (2006). ArticleCAS Google Scholar
Robien, M.A., Krumm, B.E., Sandkvist, M. & Hol, W.G. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol.333, 657–674 (2003). ArticleCAS Google Scholar
Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W.G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol.344, 619–633 (2004). ArticleCAS Google Scholar
Abendroth, J., Rice, A.E., McLuskey, K., Bagdasarian, M. & Hol, W.G. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J. Mol. Biol.338, 585–596 (2004). ArticleCAS Google Scholar
Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W.G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol.348, 845–855 (2005). ArticleCAS Google Scholar
Korotkov, K.V., Krumm, B., Bagdasarian, M. & Hol, W.G. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J. Mol. Biol.363, 311–321 (2006). ArticleCAS Google Scholar
Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. Structure of the minor pseudopilin EpsH from the type 2 Secretion system of Vibrio cholerae. J. Mol. Biol.375, 471–486 (2008). ArticleCAS Google Scholar
Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J. Mol. Biol.375, 471–486 (2008). ArticleCAS Google Scholar
Pugsley, A.P., Bayan, N. & Sauvonnet, N. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J. Bacteriol.183, 1312–1319 (2001). ArticleCAS Google Scholar
Durand, E. et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem.280, 31378–31389 (2005). ArticleCAS Google Scholar
Reyss, I. & Pugsley, A.P. Five additional genes in the pulC-O operon of the Gram-negative bacterium Klebsiella oxytoca UNF5023 which are required for pullulanase secretion. Mol. Gen. Genet.222, 176–184 (1990). ArticleCAS Google Scholar
Helaine, S., Dyer, D.H., Nassif, X., Pelicic, V. & Forest, K.T. 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili. Proc. Natl. Acad. Sci. USA104, 15888–15893 (2007). ArticleCAS Google Scholar
Holm, L. & Sander, C. Mapping the protein universe. Science273, 595–603 (1996). ArticleCAS Google Scholar
Hansen, J.K. & Forest, K.T. Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J. Mol. Microbiol. Biotechnol.11, 192–207 (2006). ArticleCAS Google Scholar
Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA93, 13–20 (1996). ArticleCAS Google Scholar
Jones, S. & Thornton, J.M. Protein-protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol.63, 31–65 (1995). ArticleCAS Google Scholar
Nunn, D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol.9, 402–408 (1999). ArticleCAS Google Scholar
Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol.185, 3416–3428 (2003). ArticleCAS Google Scholar
Alm, R.A. & Mattick, J.S. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene192, 89–98 (1997). ArticleCAS Google Scholar
Hu, N.T. et al. XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem. J.365, 205–211 (2002). ArticleCAS Google Scholar
Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol.185, 2749–2758 (2003). ArticleCAS Google Scholar
van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol.229, 105–124 (1993). ArticleCAS Google Scholar
Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol.142, 170–179 (2003). ArticleCAS Google Scholar
Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat.11, 49–52 (2004). ArticleCAS Google Scholar
Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr.59, 2023–2030 (2003). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar
Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr.62, 439–450 (2006). Article Google Scholar