Type IV pilus structure and bacterial pathogenicity (original) (raw)
Levine, M. M. et al. The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. J. Infect. Dis.152, 550–559 (1985). CASPubMed Google Scholar
Herrington, D. A. et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med.168, 1487–1492 (1988). CASPubMed Google Scholar
Tacket, C. O. et al. Investigation of the roles of toxin-coregulated pili and mannose-sensitive hemagglutinin pili in the pathogenesis of Vibrio cholerae O139 infection. Infect. Immun.66, 692–695 (1998). CASPubMedPubMed Central Google Scholar
Bieber, D. et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science280, 2114–2118 (1998). CASPubMed Google Scholar
Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA99, 16012–16017 (2002). CASPubMed Google Scholar
Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature407, 98–102 (2000). The authors use laser tweezers to show thatN. gonorrhoeaetype IV pili tether the cells to a quartz surface and retract with a force that can exceed 80 pN, pulling cells forward, and that this process requires functional PilT. CASPubMed Google Scholar
Bragg, S. L. The Development of X-ray Analysis (eds Phillips, D. C. & Lipson, H.) (G. Bell, London, 1975). Google Scholar
Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. & Lindberg, U. The structure of crystalline profilin-β-actin. Nature365, 810–816 (1993). CASPubMed Google Scholar
Kabsch, W., Mannherz, H. G. & Suck, D. Three-dimensional structure of the complex of actin and DNase I at 4.5 Å resolution. EMBO J.4, 2113–2118 (1985). CASPubMedPubMed Central Google Scholar
McLaughlin, P. J., Gooch, J. T., Mannherz, H. G. & Weeds, A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature364, 685–692 (1993). CASPubMed Google Scholar
Robinson, R. C. et al. Domain movement in gelsolin: a calcium-activated switch. Science286, 1939–1942 (1999). CASPubMed Google Scholar
Otterbein, L. R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science293, 708–711 (2001). CAS Google Scholar
Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science261, 50–58 (1993). CASPubMed Google Scholar
Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature410, 331–337 (2001). CASPubMed Google Scholar
Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science285, 1058–1061 (1999). CASPubMed Google Scholar
Craig, L. et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell.11, 1139–1150 (2003). Describes the first type IVb pilin structure forV. choleraeTcpA, which reveals a new protein fold, together with a full-length PAK pilin structure and a model forV. choleraepilus assembly that is applicable to all type IV pili. CASPubMed Google Scholar
Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature378, 32–38 (1995). The first structure of a type IV pilin reveals a ladle-shaped molecule with a 52-residue long N-terminal α-helix, an αβ-roll fold, a hypervariable β-hairpin and a covalently linked phosphate and disaccharide for GC pilin. A model for pilus assembly is presented based on symmetry of the PAK pilus filament. CASPubMed Google Scholar
Hazes, B., Sastry, P. A., Hayakawa, K., Read, R. J. & Irvin, R. T. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J. Mol. Biol.299, 1005–1017 (2000). This first structure of the PAK pilin globular head domain reveals a similar fold to GC pilin and a receptor-binding loop that presents a surface dominated by main chain atoms. CASPubMed Google Scholar
Keizer, D. W. et al. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J. Biol. Chem.276, 24186–24193 (2001). NMR solution structure of the soluble domain ofP. aeruginosaK122-4 pilin showing an unusually large angle between the N-terminal α-helix and β-sheet compared with GC and PAK pilin. A model for K122-4 pilus assembly is also presented. CASPubMed Google Scholar
Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature424, 643–650 (2003). CASPubMed Google Scholar
Li, H., DeRosier, D., Nicholson, W., Nogales, E. & Downing, K. Microtubule structure at 8 Å resolution. Structure10, 1317 (2002). CASPubMed Google Scholar
Zhu, Y., Carragher, B., Kriegman, D. J., Milligan, R. A. & Potter, C. S. Automated identification of filaments in cryo-electron microscopy images. J. Struct. Biol.135, 302–312 (2001). CASPubMed Google Scholar
Pauling, L. & Corey, R. B. Two hydrogen-bonded spiral configurations of the polypeptide chain. J. Am. Chem. Soc.72, 534 (1950). Google Scholar
Franklin, R. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature171, 740–741 (1953). CASPubMed Google Scholar
Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature171, 737–738 (1953). CASPubMed Google Scholar
Kishchenko, G., Batliwala, H. & Makowski, L. Structure of a foreign peptide displayed on the surface of bacteriophage M13. J. Mol. Biol.241, 208–213 (1994). CASPubMed Google Scholar
Bryan, R. K., Bansal, M., Folkhard, W., Nave, C. & Marvin, D. A. Maximum-entropy calculation of the electron density at 4 Å resolution of Pf1 filamentous bacteriophage. Proc. Natl Acad. Sci. USA80, 4728–4731 (1983). CASPubMed Google Scholar
Peterson, C., Winter, W. T., Dalack, G. W. & Day, L. A. Structure of the filamentous bacteriophage, Pf3, by X-ray fiber diffraction. J. Mol. Biol.162, 877–881 (1982). CASPubMed Google Scholar
Marvin, D. A., Nadassy, K., Welsh, L. C. & Forest, K. Type-4 bacterial pili: molecular models and their simulated diffraction patterns. Fibre Diffract. Rev.11, 87–94 (2003). X-ray fibre diffraction data for GC and PAK pili indicate differences in their packing arrangements. Google Scholar
Marvin, D. A. & Folkhard, W. Structure of F-pili: reassessment of the symmetry. J. Mol. Biol.191, 299–300 (1986). CASPubMed Google Scholar
Serpell, L. C., Berriman, J., Jakes, R., Goedert, M. & Crowther, R. A. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc. Natl Acad. Sci. USA97, 4897–4902 (2000). CASPubMed Google Scholar
Perutz, M. F., Finch, J. T., Berriman, J. & Lesk, A. Amyloid fibers are water-filled nanotubes. Proc. Natl Acad. Sci. USA99, 5591–5595 (2002). CASPubMed Google Scholar
Morozova-Roche, L. A. et al. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J. Struct. Biol.130, 339–351 (2000). CASPubMed Google Scholar
Inouye, H. et al. Analysis of X-ray diffraction patterns from amyloid of biopsied vitreous humor and kidney of transthyretin (TTR) Met30 familial amyloidotic polyneuropathy (FAP) patients: axially arrayed TTR monomers constitute the protofilament. Amyloid5, 163–174 (1998). CASPubMed Google Scholar
Folkhard, W., Marvin, D. A., Watts, T. H. & Paranchych, W. Structure of polar pili from Pseudomonas aeruginosa strains K and O. J. Mol. Biol.149, 79–93 (1981). First X-ray fibre diffraction analysis of PAK and PAO pili defining their helical symmetry. CASPubMed Google Scholar
Swanson, J. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J. Exp. Med.137, 571–589 (1973). CASPubMedPubMed Central Google Scholar
Potts, W. J. & Saunders, J. R. Nucleotide sequence of the structural gene for class I pilin from Neisseria meningitidis: homologies with the pilE locus of Neisseria gonorrhoeae. Mol. Microbiol.2, 647–653 (1988). CASPubMed Google Scholar
Meyer, T. F., Billyard, E., Haas, R., Storzbach, S. & So, M. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc. Natl Acad. Sci. USA81, 6110–6114 (1984). CASPubMed Google Scholar
Bradley, D. E. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can. J. Microbiol.26, 146–154 (1980). CASPubMed Google Scholar
Woods, D. E., Straus, D. C., Johanson, W. G. Jr, Berry, V. K. & Bass, J. A. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect. Immun.29, 1146–1151 (1980). CASPubMedPubMed Central Google Scholar
Johnson, K., Parker, M. L. & Lory, S. Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J. Biol. Chem.261, 15703–15708 (1986). CASPubMed Google Scholar
McKern, N. M., Stewart, D. J. & Strike, P. M. Amino acid sequences of pilins from serologically distinct strains of Bacteroides nodosus. J. Protein Chem.7, 157–164 (1988). CASPubMed Google Scholar
Tonjum, T., Marrs, C. F., Rozsa, F. & Bovre, K. The type 4 pilin of Moraxella nonliquefaciens exhibits unique similarities with the pilins of Neisseria gonorrhoeae and Dichelobacter (Bacteroides) nodosus. J. Gen. Microbiol.137, 2483–2490 (1991). CASPubMed Google Scholar
Tonjum, T., Weir, S., Bovre, K., Progulske-Fox, A. & Marrs, C. F. Sequence divergence in two tandemly located pilin genes of Eikenella corrodens. Infect. Immun.61, 1909–1916 (1993). CASPubMedPubMed Central Google Scholar
Dorr, J., Hurek, T. & Reinhold-Hurek, B. Type IV pili are involved in plant–microbe and fungus–microbe interactions. Mol. Microbiol.30, 7–17 (1998). CASPubMed Google Scholar
Rendulic, S. et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science303, 689–692 (2004). CASPubMed Google Scholar
Faast, R., Ogierman, M. A., Stroeher, U. H. & Manning, P. A. Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene85, 227–231 (1989). CASPubMed Google Scholar
Shaw, C. E. & Taylor, R. K. Vibrio cholerae O395 tcpA pilin gene sequence and comparison of predicted protein structural features to those of type 4 pilins. Infect. Immun.58, 3042–3049 (1990). CASPubMedPubMed Central Google Scholar
Zhang, X. L. et al. Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect. Immun.68, 3067–3073 (2000). CASPubMedPubMed Central Google Scholar
Donnenberg, M. S., Giron, J. A., Nataro, J. P. & Kaper, J. B. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol. Microbiol.6, 3427–3437 (1992). CASPubMed Google Scholar
Giron, J. A., Ho, A. S. & Schoolnik, G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science254, 710–713 (1991). CASPubMed Google Scholar
Taniguchi, T., Fujino, Y., Yamamoto, K., Miwatani, T. & Honda, T. Sequencing of the gene encoding the major pilin of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli and evidence that CFA/III is related to type IV pili. Infect. Immun.63, 724–728 (1995). CASPubMedPubMed Central Google Scholar
Giron, J. A., Levine, M. M. & Kaper, J. B. Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol. Microbiol.12, 71–82 (1994). CASPubMed Google Scholar
Pasloske, B. L., Scraba, D. G. & Paranchych, W. Assembly of mutant pilins in Pseudomonas aeruginosa: formation of pili composed of heterologous subunits. J. Bacteriol.171, 2142–2147 (1989). CASPubMedPubMed Central Google Scholar
Strom, M. S. & Lory, S. Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J. Biol. Chem.266, 1656–1664 (1991). CASPubMed Google Scholar
Macdonald, D. L., Pasloske, B. L. & Paranchych, W. Mutations in the fifth position glutamate in Pseudomonas aeruginosa pilin affect the transmethylation of the N-terminal phenylalanine. Can. J. Microbiol.39, 500–505 (1993). CASPubMed Google Scholar
Forest, K. T. & Tainer, J. A. Type-4 pilus-structure: outside to inside and top to bottom — a minireview. Gene192, 165–169 (1997). CASPubMed Google Scholar
Marceau, M., Forest, K., Beretti, J. L., Tainer, J. & Nassif, X. Consequences of the loss of _O_-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol.27, 705–715 (1998). The authors identify the MC pilin glycosylation site at Ser63 and show that glycosylation does not have an important role in pilus assembly or adhesion but is required for expression of S pilin. CASPubMed Google Scholar
Forest, K. T., Dunham, S. A., Koomey, M. & Tainer, J. A. Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol. Microbiol.31, 743–752 (1999). The covalently linked phosphate at Ser63 of GC pilin was removed by mutation (Ser to Ala), producing pili that were functionally indistinguishable from the wild typein vitro, but were less straight and more bundled, indicating that the phosphate might have a minor role in pilus assembly. CASPubMed Google Scholar
Zhang, H. Z. & Donnenberg, M. S. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol. Microbiol.21, 787–797 (1996). CASPubMed Google Scholar
Kirn, T. J., Lafferty, M. J., Sandoe, C. M. & Taylor, R. K. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol. Microbiol.35, 896–910 (2000). Discrete functional domains are identified in the D-region ofV. choleraeTcpA. The first two-thirds of the D-region are required for pilin folding and/or pilus assembly and are predicted to be buried in the TCP filament, and the last third of the D-region is involved in pilus–pilus interactions and predicted to be surface-exposed. CASPubMed Google Scholar
Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem.34, 167–339 (1981). CASPubMed Google Scholar
Lee, K. K. et al. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol. Microbiol.11, 705–713 (1994). The authors present strong evidence that the receptor-binding region of PAK pilin is buried along the length of the pilus filament and only exposed at its tip. CASPubMed Google Scholar
Krivan, H. C., Roberts, D. D. & Ginsburg, V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc β-1–4Gal found in some glycolipids. Proc. Natl Acad. Sci. USA85, 6157–6161 (1988). CASPubMed Google Scholar
Ramphal, R., Sadoff, J. C., Pyle, M. & Silipigni, J. D. Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium. Infect. Immun.44, 38–40 (1984). CASPubMedPubMed Central Google Scholar
Sun, D., Seyer, J. M., Kovari, I., Siumrada, R. A. & Taylor, R. K. Localization of protective epitopes within the pilin subunit of the Vibrio cholerae toxin-coregulated pilus. Infect. Immun.59, 114–118 (1991). CASPubMedPubMed Central Google Scholar
Virji, M. & Heckels, J. E. The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J. Gen. Microbiol.130, 1089–1095 (1984). CASPubMed Google Scholar
Forest, K. T. et al. Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies. Infect. Immun.64, 644–652 (1996). CASPubMedPubMed Central Google Scholar
Watts, T. H., Kay, C. M. & Paranchych, W. Dissociation and characterization of pilin isolated from Pseudomonas aeruginosa strains PAK and PAO. Can. J. Biochem.60, 867–872 (1982). CASPubMed Google Scholar
Watts, T. H., Kay, C. M. & Paranchych, W. Spectral properties of three quaternary arrangements of Pseudomonas pilin. Biochemistry22, 3640–3646 (1983). CASPubMed Google Scholar
Bayley, D. P. & Jarrell, K. F. Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. J. Mol. Evol.46, 370–373 (1998). CASPubMed Google Scholar
Cohen-Krausz, S. & Trachtenberg, S. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J. Mol. Biol.321, 383–395 (2002). CASPubMed Google Scholar
Bardy, S. L., Ng, S. Y. & Jarrell, K. F. Prokaryotic motility structures. Microbiology149, 295–304 (2003). CASPubMed Google Scholar
Correia, J. D. & Jarrell, K. F. Posttranslational processing of Methanococcus voltae preflagellin by preflagellin peptidases of M. voltae and other methanogens. J. Bacteriol.182, 855–858 (2000). CASPubMedPubMed Central Google Scholar
Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology149, 3051–3072 (2003). CASPubMed Google Scholar
Nunn, D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol.9, 402–408 (1999). CASPubMed Google Scholar
Sandkvist, M. Biology of type II secretion. Mol. Microbiol.40, 271–283 (2001). CASPubMed Google Scholar
Sauvonnet, N., Vignon, G., Pugsley, A. P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J.19, 2221–2228 (2000). First demonstration that pseudopilins can form pilus-like 'pseudo-pili', achieved by overexpressing the 15 genes encoding theKlebsiella oxytocapullulanase type II secreton inE. coli. This secreton also assembled the type IV pilin PpdD into pilus filaments. CASPubMedPubMed Central Google Scholar
Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol.185, 3416–3428 (2003). CASPubMedPubMed Central Google Scholar
Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol.185, 2749–2758 (2003). CASPubMedPubMed Central Google Scholar
Tsui, I. S., Yip, C. M., Hackett, J. & Morris, C. The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect. Immun.71, 6049–6050 (2003). CASPubMedPubMed Central Google Scholar
Tobe, T. & Sasakawa, C. Role of bundle-forming pilus of enteropathogenic Escherichia coli in host cell adherence and in microcolony development. Cell. Microbiol.3, 579–585 (2001). CASPubMed Google Scholar
Tobe, T. & Sasakawa, C. Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell. Microbiol.4, 29–42 (2002). CASPubMed Google Scholar
Doig, P. et al. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect. Immun.56, 1641–1646 (1988). CASPubMedPubMed Central Google Scholar
Krivan, H. C., Ginsburg, V. & Roberts, D. D. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch. Biochem. Biophys.260, 493–496 (1988). CASPubMed Google Scholar
Ramphal, R. et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal β-1–3GlcNAc) or type 2 (Gal β-1–4GlcNAc) disaccharide units. Infect. Immun.59, 700–704 (1991). CASPubMedPubMed Central Google Scholar
Doig, P., Paranchych, W., Sastry, P. A. & Irvin, R. T. Human buccal epithelial cell receptors of Pseudomonas aeruginosa: identification of glycoproteins with pilus binding activity. Can. J. Microbiol.35, 1141–1145 (1989). CASPubMed Google Scholar
Lee, K. K., Doig, P., Irvin, R. T., Paranchych, W. & Hodges, R. S. Mapping the surface regions of Pseudomonas aeruginosa PAK pilin: the importance of the C-terminal region for adherence to human buccal epithelial cells. Mol. Microbiol.3, 1493–1499 (1989). CASPubMed Google Scholar
Doig, P. et al. Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect. Immun.58, 124–130 (1990). CASPubMedPubMed Central Google Scholar
Farinha, M. A. et al. Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect. Immun.62, 4118–4123 (1994). CASPubMedPubMed Central Google Scholar
Wong, W. Y. et al. Structure–function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. Biochemistry34, 12963–12972 (1995). CASPubMed Google Scholar
Sheth, H. B. et al. Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. Biomed. Pept. Proteins Nucleic Acids1, 141–148 (1995). CASPubMed Google Scholar
Lepper, A. W., Moore, L. J., Atwell, J. L. & Tennent, J. M. The protective efficacy of pili from different strains of Moraxella bovis within the same serogroup against infectious bovine keratoconjunctivitis. Vet. Microbiol.32, 177–187 (1992). CASPubMed Google Scholar
Hunt, J. D., Jackson, D. C., Brown, L. E., Wood, P. R. & Stewart, D. J. Antigenic competition in a multivalent foot rot vaccine. Vaccine12, 457–464 (1994). CASPubMed Google Scholar
Egerton, J. R. et al. Protection of sheep against footrot with a recombinant DNA-based fimbrial vaccine. Vet. Microbiol.14, 393–409 (1987). CASPubMed Google Scholar
Swanson, J., Robbins, K., Barrera, O. & Koomey, J. M. Gene conversion variations generate structurally distinct pilin polypeptides in Neisseria gonorrhoeae. J. Exp. Med.165, 1016–1025 (1987). CASPubMed Google Scholar
Kellogg, D. S. Jr, Cohen, I. R., Norins, L. C., Schroeter, A. L. & Reising, G. Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J. Bacteriol.96, 596–605 (1968). PubMedPubMed Central Google Scholar
Kallstrom, H., Liszewski, M. K., Atkinson, J. P. & Jonsson, A. B. Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol. Microbiol.25, 639–647 (1997). Identified the cell surface receptor forN. gonorrhoeaeand established a direct interaction between GC pili and CD46. CASPubMed Google Scholar
Liszewski, M. K., Post, T. W. & Atkinson, J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu. Rev. Immunol.9, 431–455 (1991). CASPubMed Google Scholar
Haas, R., Schwarz, H. & Meyer, T. F. Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA84, 9079–9083 (1987). CASPubMed Google Scholar
Rytkonen, A., Johansson, L., Asp, V., Albiger, B. & Jonsson, A. B. Soluble pilin of Neisseria gonorrhoeae interacts with human target cells and tissue. Infect. Immun.69, 6419–6426 (2001). CASPubMedPubMed Central Google Scholar
Rudel, T., van Putten, J. P., Gibbs, C. P., Haas, R. & Meyer, T. F. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol. Microbiol.6, 3439–3450 (1992). CASPubMed Google Scholar
Scheuerpflug, I., Rudel, T., Ryll, R., Pandit, J. & Meyer, T. F. Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect. Immun.67, 834–843 (1999). CASPubMedPubMed Central Google Scholar
Nassif, X. et al. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc. Natl Acad. Sci. USA91, 3769–3773 (1994). CASPubMed Google Scholar
Rudel, T., Scheurerpflug, I. & Meyer, T. F. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature373, 357–359 (1995). Showed that PilC is present at the ends ofN. gonorrhoeatype IV pili, and implicated this protein in adhesion by showing PilC-mediated inhibition of pilus-mediated attachment ofN. gonorrhoeaeandN. meningitidisto human epithelial cells. CASPubMed Google Scholar
Jonsson, A. B., Ilver, D., Falk, P., Pepose, J. & Normark, S. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol.13, 403–416 (1994). CASPubMed Google Scholar
Jonsson, A. B., Nyberg, G. & Normark, S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J.10, 477–488 (1991). CASPubMedPubMed Central Google Scholar
Winther-Larsen, H. C. et al. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc. Natl Acad. Sci. USA98, 15276–15281 (2001). CASPubMed Google Scholar
Hagblom, P., Segal, E., Billyard, E. & So, M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature315, 156–158 (1985). Identified constant and antigenically variable regions ofN. gonorrhoeaetype IV pilin and showed that during the course of a human gonococcal infection,N. gonorrhoeaevariants give rise to new isolates expressing altered pili. CASPubMed Google Scholar
Segal, E., Billyard, E., So, M., Storzbach, S. & Meyer, T. F. Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell40, 293–300 (1985). CASPubMed Google Scholar
Long, C. D., Madraswala, R. N. & Seifert, H. S. Comparisons between colony phase variation of Neisseria gonorrhoeae FA1090 and pilus, pilin, and S-pilin expression. Infect. Immun.66, 1918–1927 (1998). CASPubMedPubMed Central Google Scholar
Stern, A., Nickel, P., Meyer, T. F. & So, M. Opacity determinants of Neisseria gonorrhoeae: gene expression and chromosomal linkage to the gonococcal pilus gene. Cell37, 447–456 (1984). CASPubMed Google Scholar
Boslego, J. W. et al. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine9, 154–162 (1991). CASPubMed Google Scholar
Rytkonen, A. et al. Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. J. Infect. Dis.189, 402–409 (2004). PubMed Google Scholar
Comer, J. E., Marshall, M. A., Blanch, V. J., Deal, C. D. & Castric, P. Identification of the Pseudomonas aeruginosa 1244 pilin glycosylation site. Infect. Immun.70, 2837–2845 (2002). CASPubMedPubMed Central Google Scholar
Castric, P., Cassels, F. J. & Carlson, R. W. Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem.276, 26479–26485 (2001). CASPubMed Google Scholar
Kaiser, D. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl Acad. Sci. USA76, 5952–5956 (1979). CASPubMed Google Scholar
Sun, H., Zusman, D. R. & Shi, W. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol.10, 1143–1146 (2000). CASPubMed Google Scholar
Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA98, 6901–6904 (2001). A direct demonstration that twitching motility is driven by type IV pilus retraction. Total internal reflection microscopy was used to record extension and retraction of fluorescently labelled type IV pili at rates of 0.5 μm s−1inP. aeruginosa, and showed that pilus retraction propelled cells forward. CASPubMed Google Scholar
Whitchurch, C. B., Hobbs, M., Livingston, S. P., Krishnapillai, V. & Mattick, J. S. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene101, 33–44 (1991). Identified the gene for PilT and established a genetic relationship between the type IV pili and the type II secretion system on the basis of homology of assembly components. CASPubMed Google Scholar
Wolfgang, M., van Putten, J. P., Hayes, S. F., Dorward, D. & Koomey, M. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J.19, 6408–6418 (2000). CASPubMedPubMed Central Google Scholar
Kaiser, D. Bacterial motility: how do pili pull? Curr. Biol.10, R777–R780 (2000). CASPubMed Google Scholar
Fussenegger, M., Rudel, T., Barten, R., Ryll, R. & Meyer, T. F. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae — a review. Gene192, 125–134 (1997). CASPubMed Google Scholar
Vuopio-Varkila, J. & Schoolnik, G. K. Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins. J. Exp. Med.174, 1167–1177 (1991). CASPubMed Google Scholar
Cravioto, A., Gross, R. J., Scotland, S. M. & Rowe, B. An adhesive factor found in strains of Escherichia coli belonging to the tradiitional infantile enteropathogenic serotypes. Curr. Microbiol.3, 95–99 (1979). Google Scholar
Scaletsky, I. C., Silva, M. L. & Trabulsi, L. R. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect. Immun.45, 534–536 (1984). CASPubMedPubMed Central Google Scholar
Hicks, S., Frankel, G., Kaper, J. B., Dougan, G. & Phillips, A. D. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect. Immun.66, 1570–1578 (1998). CASPubMedPubMed Central Google Scholar
Donnenberg, M. S., Kaper, J. B. & Finlay, B. B. Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol.5, 109–114 (1997). CASPubMed Google Scholar
Nataro, J. P. et al. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr. Infect. Dis. J.6, 829–831 (1987). CASPubMed Google Scholar
Knutton, S., Shaw, R. K., Anantha, R. P., Donnenberg, M. S. & Zorgani, A. A. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol. Microbiol.33, 499–509 (1999). CASPubMed Google Scholar
O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol.30, 295–304 (1998). CASPubMed Google Scholar
Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol.50, 61–68 (2003). CASPubMed Google Scholar
Freitag, N. E., Seifert, H. S. & Koomey, M. Characterization of the pilF–pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol. Microbiol.16, 575–586 (1995). CASPubMed Google Scholar
Tonjum, T., Freitag, N. E., Namork, E. & Koomey, M. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol. Microbiol.16, 451–464 (1995). CASPubMed Google Scholar
Drake, S. L. & Koomey, M. The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol. Microbiol.18, 975–986 (1995). CASPubMed Google Scholar
Aas, F. E. et al. Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression. Mol. Microbiol.46, 749–760 (2002). Demonstrated that DNA binding and uptake occur in two discrete steps, with DNA binding requiring type IV pili and ComP, and DNA uptake requiring functional PilT. CASPubMed Google Scholar
Karaolis, D. K., Somara, S., Maneval, D. R. Jr, Johnson, J. A. & Kaper, J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature399, 375–379 (1999). CASPubMed Google Scholar
Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science272, 1910–1914 (1996). Identified the filamentous phage CTXφ, which carries the structural genes for cholera toxin, and showed that CTXφ uses theV. choleraeTCP as its receptor. CASPubMed Google Scholar
Bradley, D. A pilus-dependent Pseudomonas aeruginosa bacteriophage with a long noncontractile tail. Virology51, 489–492 (1973). CASPubMed Google Scholar
Sun, T. P. & Webster, R. E. Nucleotide sequence of a gene cluster involved in entry of colicins and single–stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J. Bacteriol.169, 2667–2674 (1987). CASPubMedPubMed Central Google Scholar
Ayala, B. P. et al. The pilus-induced Ca2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell. Microbiol.3, 265–275 (2001). CASPubMed Google Scholar
Kallstrom, H. & Jonsson, A. B. Characterization of the region downstream of the pilus biogenesis gene pilC1 in Neisseria gonorrhoeae. Biochim. Biophys. Acta1397, 137–140 (1998). CASPubMed Google Scholar
Jendrossek, V. et al. Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect. Immun.71, 2665–2673 (2003). CASPubMedPubMed Central Google Scholar
Abul-Milh, M., Wu, Y., Lau, B., Lingwood, C. A. & Foster, D. B. Induction of epithelial cell death including apoptosis by enteropathogenic Escherichia coli expressing bundle-forming pili. Infect. Immun.69, 7356–7364 (2001). CASPubMedPubMed Central Google Scholar
Gill, D. B., Koomey, M., Cannon, J. G. & Atkinson, J. P. Down-regulation of CD46 by piliated Neisseria gonorrhoeae. J. Exp. Med.198, 1313–1322 (2003). CASPubMedPubMed Central Google Scholar
Blom, A. M. et al. A novel interaction between type IV pili of Neisseria gonorrhoeae and the human complement regulator C4B-binding protein. J. Immunol.166, 6764–6770 (2001). CASPubMed Google Scholar