Lansbury, P.T. & Lashuel, H.A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature443, 774–779 (2006). ArticleCAS Google Scholar
Frieden, C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Annu. Rev. Biophys. Biophys. Chem.14, 189–210 (1985). ArticleCAS Google Scholar
Collins, S.R., Douglass, A., Vale, R.D. & Weissman, J.S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol.2, e321 (2004). Article Google Scholar
Lomakin, A., Teplow, D.B., Kirschner, D.A. & Benedek, G.B. Kinetic theory of fibrillogenesis of amyloid β-protein. Proc. Natl. Acad. Sci. USA94, 7942–7947 (1997). ArticleCAS Google Scholar
Muchowski, P.J. & Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci.6, 11–22 (2005). ArticleCAS Google Scholar
Gosal, W.S. et al. Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J. Mol. Biol.351, 850–864 (2005). ArticleCAS Google Scholar
Cerda-Costa, N., Esteras-Chopo, A., Aviles, F.X., Serrano, L. & Villegas, V. Early kinetics of amyloid fibril formation reveals conformational reorganisation of initial aggregates. J. Mol. Biol.366, 1351–1363 (2007). ArticleCAS Google Scholar
Rousseau, F., Schymkowitz, J. & Serrano, L. Protein aggregation and amyloidosis: confusion of the kinds? Curr. Opin. Struct. Biol.16, 118–126 (2006). ArticleCAS Google Scholar
Yang, D.S., Yip, C.M., Huang, T.H., Chakrabartty, A. & Fraser, P.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Biol. Chem.274, 32970–32974 (1999). ArticleCAS Google Scholar
Serpell, L.C., Berriman, J., Jakes, R., Goedert, M. & Crowther, R.A. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc. Natl. Acad. Sci. USA97, 4897–4902 (2000). ArticleCAS Google Scholar
Pellarin, R. & Caflisch, A. Interpreting the aggregation kinetics of amyloid peptides. J. Mol. Biol.360, 882–892 (2006). ArticleCAS Google Scholar
Cohen, F.E. & Kelly, J.W. Therapeutic approaches to protein-misfolding diseases. Nature426, 905–909 (2003). ArticleCAS Google Scholar
Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol. Cell23, 425–438 (2006). ArticleCAS Google Scholar
Muchowski, P.J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA97, 7841–7846 (2000). ArticleCAS Google Scholar
Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell23, 887–897 (2006). ArticleCAS Google Scholar
Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol.8, 1155–1162 (2006). ArticleCAS Google Scholar
Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol.8, 1163–1170 (2006). ArticleCAS Google Scholar
Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T., Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science294, 1346–1349 (2001). ArticleCAS Google Scholar
Williams, A.D. et al. Structural properties of Aβ protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA102, 7115–7120 (2005). ArticleCAS Google Scholar
Necula, M. et al. Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry46, 8850–8860 (2007). ArticleCAS Google Scholar
Ehrnhoefer, D.E. et al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet.15, 2743–2751 (2006). ArticleCAS Google Scholar
Masuda, M. et al. Small molecule inhibitors of α-synuclein filament assembly. Biochemistry45, 6085–6094 (2006). ArticleCAS Google Scholar
LeVine, H., III. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol.309, 274–284 (1999). ArticleCAS Google Scholar
Wood, S.J. et al. α-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem.274, 19509–19512 (1999). ArticleCAS Google Scholar
Bosco, D.A. et al. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrilization. Nat. Chem. Biol.2, 249–253 (2006). ArticleCAS Google Scholar
Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. & Lansbury, P.T., Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry35, 13709–13715 (1996). ArticleCAS Google Scholar
Paz, M.A., Fluckiger, R., Boak, A., Kagan, H.M. & Gallop, P.M. Specific detection of quinoproteins by redox-cycling staining. J. Biol. Chem.266, 689–692 (1991). CASPubMed Google Scholar
Craik, D.J. & Wilce, J.A. Studies of protein-ligand interactions by NMR. Methods Mol. Biol.60, 195–232 (1997). CASPubMed Google Scholar
Bertoncini, C.W., Fernandez, C.O., Griesinger, C., Jovin, T.M. & Zweckstetter, M. Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation. J. Biol. Chem.280, 30649–30652 (2005). ArticleCAS Google Scholar
Harper, J.D. & Lansbury, P.T. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem.66, 385–407 (1997). ArticleCAS Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). ArticleCAS Google Scholar
Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature416, 507–511 (2002). ArticleCAS Google Scholar
El-Agnaf, O.M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett.440, 71–75 (1998). ArticleCAS Google Scholar
Goedert, M. & Spillantini, M.G. A century of Alzheimer's disease. Science314, 777–781 (2006). ArticleCAS Google Scholar
Bieschke, J., Zhang, Q., Powers, E.T., Lerner, R.A. & Kelly, J.W. Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry44, 4977–4983 (2005). ArticleCAS Google Scholar
Walsh, D.M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem.274, 25945–25952 (1999). ArticleCAS Google Scholar
Bennett, M.C. The role of α-synuclein in neurodegenerative diseases. Pharmacol. Ther.105, 311–331 (2005). ArticleCAS Google Scholar
Iwai, A. et al. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron14, 467–475 (1995). ArticleCAS Google Scholar
Fernandez, C.O. et al. NMR of α-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J.23, 2039–2046 (2004). ArticleCAS Google Scholar
Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des.67, 27–37 (2006). ArticleCAS Google Scholar
Del Mar, C., Greenbaum, E.A., Mayne, L., Englander, S.W. & Woods, V.L., Jr. Structure and properties of α-synuclein and other amyloids determined at the amino acid level. Proc. Natl. Acad. Sci. USA102, 15477–15482 (2005). ArticleCAS Google Scholar
Bieschke, J., Siegel, S.J., Fu, Y. & Kelly, J.W. Alzheimer's Aβ peptides containing an isostructural backbone mutation afford distinct aggregate morphologies but analogous cytotoxicity. Evidence for a common low-abundance toxic structure(s)? Biochemistry47, 50–59 (2008). ArticleCAS Google Scholar
Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci.27, 527–533 (2002). ArticleCAS Google Scholar
Mandel, S.A. et al. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals14, 46–60 (2005). ArticleCAS Google Scholar
Khan, N., Afaq, F., Saleem, M., Ahmad, N. & Mukhtar, H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res.66, 2500–2505 (2006). ArticleCAS Google Scholar
Kocisko, D.A. et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol.77, 10288–10294 (2003). ArticleCAS Google Scholar
Zhu, N. et al. Identification of oxidation products of (−)-epigallocatechin gallate and (−)-epigallocatechin with H2O2 . J. Agric. Food Chem.48, 979–981 (2000). ArticleCAS Google Scholar
Dedmon, M.M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M. & Dobson, C.M. Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc.127, 476–477 (2005). ArticleCAS Google Scholar
Eliezer, D., Kutluay, E., Bussell, R. Jr. & Browne, G. Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol.307, 1061–1073 (2001). ArticleCAS Google Scholar