Complexin and Ca2+ stimulate SNARE-mediated membrane fusion (original) (raw)
References
McMahon, H.T., Missler, M., Li, C. & Sudhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell83, 111–119 (1995). ArticleCAS Google Scholar
Ishizuka, T., Saisu, H., Odani, S. & Abe, T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem. Biophys. Res. Commun.213, 1107–1114 (1995). ArticleCAS Google Scholar
Reim, K. et al. Structurally and functionally unique complexins at retinal ribbon synapses. J. Cell Biol.169, 669–680 (2005). ArticleCAS Google Scholar
Pabst, S. et al. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem.277, 7838–7848 (2002). ArticleCAS Google Scholar
Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron33, 397–409 (2002). ArticleCAS Google Scholar
Rothman, J.E. Mechanisms of intracellular protein transport. Nature372, 55–63 (1994). ArticleCAS Google Scholar
Brunger, A.T. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys.38, 1–47 (2005). ArticleCAS Google Scholar
Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct.35, 135–160 (2006). ArticleCAS Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998). ArticleCAS Google Scholar
Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature395, 347–353 (1998). ArticleCAS Google Scholar
Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol.5, 765–769 (1998). ArticleCAS Google Scholar
Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci.27, 509–547 (2004). Article Google Scholar
Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol.7, 631–643 (2006). ArticleCAS Google Scholar
Archer, D.A., Graham, M.E. & Burgoyne, R.D. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J. Biol. Chem.277, 18249–18252 (2002). ArticleCAS Google Scholar
Itakura, M., Misawa, H., Sekiguchi, M., Takahashi, S. & Takahashi, M. Transfection analysis of functional roles of complexin I and II in the exocytosis of two different types of secretory vesicles. Biochem. Biophys. Res. Commun.265, 691–696 (1999). ArticleCAS Google Scholar
Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell126, 1175–1187 (2006). ArticleCAS Google Scholar
Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol.14, 949–958 (2007). ArticleCAS Google Scholar
Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell104, 71–81 (2001). ArticleCAS Google Scholar
Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol.13, 748–750 (2006). ArticleCAS Google Scholar
Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science313, 676–680 (2006). ArticleCAS Google Scholar
Melia, T.J. Jr. Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett.581, 2131–2139 (2007). ArticleCAS Google Scholar
Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA103, 19731–19736 (2006). ArticleCAS Google Scholar
Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol.12, 417–422 (2005). ArticleCAS Google Scholar
Koh, T.W. & Bellen, H.J. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci.26, 413–422 (2003). ArticleCAS Google Scholar
Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006). ArticleCAS Google Scholar
Zampighi, G.A. et al. Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys. J.91, 2910–2918 (2006). ArticleCAS Google Scholar
Wong, J.L., Koppel, D.E., Cowan, A.E. & Wessel, G.M. Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell12, 653–659 (2007). ArticleCAS Google Scholar
Thorgeirsson, T.E., Russell, C.J., King, D.S. & Shin, Y.K. Direct determination of the membrane affinities of individual amino acids. Biochemistry35, 1803–1809 (1996). ArticleCAS Google Scholar
Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci.10, 1235–1237 (2007). ArticleCAS Google Scholar
Arac, D. et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol.13, 209–217 (2006). ArticleCAS Google Scholar
Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature450, 676–682 (2007). ArticleCAS Google Scholar
Saraswati, S., Adolfsen, B. & Littleton, J.T. Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release. Proc. Natl. Acad. Sci. USA104, 14122–14127 (2007). ArticleCAS Google Scholar
Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA102, 18664–18669 (2005). ArticleCAS Google Scholar
Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol.14, 904–911 (2007). ArticleCAS Google Scholar